scholarly journals A Two-Stage Approach to Important Area Detection in Gathering Place Using a Novel Multi-Input Attention Network

Sensors ◽  
2021 ◽  
Vol 22 (1) ◽  
pp. 285
Author(s):  
Jianqiang Xu ◽  
Haoyu Zhao ◽  
Weidong Min

An important area in a gathering place is a region attracting the constant attention of people and has evident visual features, such as a flexible stage or an open-air show. Finding such areas can help security supervisors locate the abnormal regions automatically. The existing related methods lack an efficient means to find important area candidates from a scene and have failed to judge whether or not a candidate attracts people’s attention. To realize the detection of an important area, this study proposes a two-stage method with a novel multi-input attention network (MAN). The first stage, called important area candidate generation, aims to generate candidate important areas with an image-processing algorithm (i.e., K-means++, image dilation, median filtering, and the RLSA algorithm). The candidate areas can be selected automatically for further analysis. The second stage, called important area candidate classification, aims to detect an important area from candidates with MAN. In particular, MAN is designed as a multi-input network structure, which fuses global and local image features to judge whether or not an area attracts people’s attention. To enhance the representation of candidate areas, two modules (i.e., channel attention and spatial attention modules) are proposed on the basis of the attention mechanism. These modules are mainly based on multi-layer perceptron and pooling operation to reconstruct the image feature and provide considerably efficient representation. This study also contributes to a new dataset called gathering place important area detection for testing the proposed two-stage method. Lastly, experimental results show that the proposed method has good performance and can correctly detect an important area.

Author(s):  
W. Krakow ◽  
D. A. Smith

The successful determination of the atomic structure of [110] tilt boundaries in Au stems from the investigation of microscope performance at intermediate accelerating voltages (200 and 400kV) as well as a detailed understanding of how grain boundary image features depend on dynamical diffraction processes variation with specimen and beam orientations. This success is also facilitated by improving image quality by digital image processing techniques to the point where a structure image is obtained and each atom position is represented by a resolved image feature. Figure 1 shows an example of a low angle (∼10°) Σ = 129/[110] tilt boundary in a ∼250Å Au film, taken under tilted beam brightfield imaging conditions, to illustrate the steps necessary to obtain the atomic structure configuration from the image. The original image of Fig. 1a shows the regular arrangement of strain-field images associated with the cores of ½ [10] primary dislocations which are separated by ∼15Å.


Author(s):  
Mohammad Rizk Assaf ◽  
Abdel-Nasser Assimi

In this article, the authors investigate the enhanced two stage MMSE (TS-MMSE) equalizer in bit-interleaved coded FBMC/OQAM system which gives a tradeoff between complexity and performance, since error correcting codes limits error propagation, so this allows the equalizer to remove not only ICI but also ISI in the second stage. The proposed equalizer has shown less design complexity compared to the other MMSE equalizers. The obtained results show that the probability of error is improved where SNR gain reaches 2 dB measured at BER compared with ICI cancellation for different types of modulation schemes and ITU Vehicular B channel model. Some simulation results are provided to illustrate the effectiveness of the proposed equalizer.


2016 ◽  
Vol 20 (2) ◽  
pp. 191-201 ◽  
Author(s):  
Wei Lu ◽  
Yan Cui ◽  
Jun Teng

To decrease the cost of instrumentation for the strain and displacement monitoring method that uses sensors as well as considers the structural health monitoring challenges in sensor installation, it is necessary to develop a machine vision-based monitoring method. For this method, the most important step is the accurate extraction of the image feature. In this article, the edge detection operator based on multi-scale structure elements and the compound mathematical morphological operator is proposed to provide improved image feature extraction. The proposed method can not only achieve an improved filtering effect and anti-noise ability but can also detect the edge more accurately. Furthermore, the required image features (vertex of a square calibration board and centroid of a circular target) can be accurately extracted using the extracted image edge information. For validation, the monitoring tests for the structural local mean strain and in-plane displacement were designed accordingly. Through analysis of the error between the measured and calculated values of the structural strain and displacement, the feasibility and effectiveness of the proposed edge detection operator are verified.


Sensors ◽  
2021 ◽  
Vol 21 (16) ◽  
pp. 5312
Author(s):  
Yanni Zhang ◽  
Yiming Liu ◽  
Qiang Li ◽  
Jianzhong Wang ◽  
Miao Qi ◽  
...  

Recently, deep learning-based image deblurring and deraining have been well developed. However, most of these methods fail to distill the useful features. What is more, exploiting the detailed image features in a deep learning framework always requires a mass of parameters, which inevitably makes the network suffer from a high computational burden. We propose a lightweight fusion distillation network (LFDN) for image deblurring and deraining to solve the above problems. The proposed LFDN is designed as an encoder–decoder architecture. In the encoding stage, the image feature is reduced to various small-scale spaces for multi-scale information extraction and fusion without much information loss. Then, a feature distillation normalization block is designed at the beginning of the decoding stage, which enables the network to distill and screen valuable channel information of feature maps continuously. Besides, an information fusion strategy between distillation modules and feature channels is also carried out by the attention mechanism. By fusing different information in the proposed approach, our network can achieve state-of-the-art image deblurring and deraining results with a smaller number of parameters and outperform the existing methods in model complexity.


2021 ◽  
pp. 016555152199980
Author(s):  
Yuanyuan Lin ◽  
Chao Huang ◽  
Wei Yao ◽  
Yifei Shao

Attraction recommendation plays an important role in tourism, such as solving information overload problems and recommending proper attractions to users. Currently, most recommendation methods are dedicated to improving the accuracy of recommendations. However, recommendation methods only focusing on accuracy tend to recommend popular items that are often purchased by users, which results in a lack of diversity and low visibility of non-popular items. Hence, many studies have suggested the importance of recommendation diversity and proposed improved methods, but there is room for improvement. First, the definition of diversity for different items requires consideration for domain characteristics. Second, the existing algorithms for improving diversity sacrifice the accuracy of recommendations. Therefore, the article utilises the topic ‘features of attractions’ to define the calculation method of recommendation diversity. We developed a two-stage optimisation model to enhance recommendation diversity while maintaining the accuracy of recommendations. In the first stage, an optimisation model considering topic diversity is proposed to increase recommendation diversity and generate candidate attractions. In the second stage, we propose a minimisation misclassification cost optimisation model to balance recommendation diversity and accuracy. To assess the performance of the proposed method, experiments are conducted with real-world travel data. The results indicate that the proposed two-stage optimisation model can significantly improve the diversity and accuracy of recommendations.


Author(s):  
Lu Chen ◽  
Handing Wang ◽  
Wenping Ma

AbstractReal-world optimization applications in complex systems always contain multiple factors to be optimized, which can be formulated as multi-objective optimization problems. These problems have been solved by many evolutionary algorithms like MOEA/D, NSGA-III, and KnEA. However, when the numbers of decision variables and objectives increase, the computation costs of those mentioned algorithms will be unaffordable. To reduce such high computation cost on large-scale many-objective optimization problems, we proposed a two-stage framework. The first stage of the proposed algorithm combines with a multi-tasking optimization strategy and a bi-directional search strategy, where the original problem is reformulated as a multi-tasking optimization problem in the decision space to enhance the convergence. To improve the diversity, in the second stage, the proposed algorithm applies multi-tasking optimization to a number of sub-problems based on reference points in the objective space. In this paper, to show the effectiveness of the proposed algorithm, we test the algorithm on the DTLZ and LSMOP problems and compare it with existing algorithms, and it outperforms other compared algorithms in most cases and shows disadvantage on both convergence and diversity.


Mathematics ◽  
2021 ◽  
Vol 9 (5) ◽  
pp. 543
Author(s):  
Alejandra Ríos ◽  
Eusebio E. Hernández ◽  
S. Ivvan Valdez

This paper introduces a two-stage method based on bio-inspired algorithms for the design optimization of a class of general Stewart platforms. The first stage performs a mono-objective optimization in order to reach, with sufficient dexterity, a regular target workspace while minimizing the elements’ lengths. For this optimization problem, we compare three bio-inspired algorithms: the Genetic Algorithm (GA), the Particle Swarm Optimization (PSO), and the Boltzman Univariate Marginal Distribution Algorithm (BUMDA). The second stage looks for the most suitable gains of a Proportional Integral Derivative (PID) control via the minimization of two conflicting objectives: one based on energy consumption and the tracking error of a target trajectory. To this effect, we compare two multi-objective algorithms: the Multiobjective Evolutionary Algorithm based on Decomposition (MOEA/D) and Non-dominated Sorting Genetic Algorithm-III (NSGA-III). The main contributions lie in the optimization model, the proposal of a two-stage optimization method, and the findings of the performance of different bio-inspired algorithms for each stage. Furthermore, we show optimized designs delivered by the proposed method and provide directions for the best-performing algorithms through performance metrics and statistical hypothesis tests.


Mathematics ◽  
2020 ◽  
Vol 9 (1) ◽  
pp. 52
Author(s):  
José Niño-Mora

We consider the multi-armed bandit problem with penalties for switching that include setup delays and costs, extending the former results of the author for the special case with no switching delays. A priority index for projects with setup delays that characterizes, in part, optimal policies was introduced by Asawa and Teneketzis in 1996, yet without giving a means of computing it. We present a fast two-stage index computing method, which computes the continuation index (which applies when the project has been set up) in a first stage and certain extra quantities with cubic (arithmetic-operation) complexity in the number of project states and then computes the switching index (which applies when the project is not set up), in a second stage, with quadratic complexity. The approach is based on new methodological advances on restless bandit indexation, which are introduced and deployed herein, being motivated by the limitations of previous results, exploiting the fact that the aforementioned index is the Whittle index of the project in its restless reformulation. A numerical study demonstrates substantial runtime speed-ups of the new two-stage index algorithm versus a general one-stage Whittle index algorithm. The study further gives evidence that, in a multi-project setting, the index policy is consistently nearly optimal.


Author(s):  
D.W. Paty

ABSTRACT:MS could well be a two stage disease. The first stage involves the sequential development of multiple small lesions, mostly inflammatory, that accumulate at a given rate. The second stage could be that of consolidation and confluence of lesions that involves not only demyelination but gliosis. MRI now gives us an opportunity to watch the evolution of these processes and also to monitor treatment effects. It is only after the evolution of this process is understood that we can design rational therapies directed toward the prevention of spasticity in MS.


Sensors ◽  
2019 ◽  
Vol 19 (2) ◽  
pp. 291 ◽  
Author(s):  
Hamdi Sahloul ◽  
Shouhei Shirafuji ◽  
Jun Ota

Local image features are invariant to in-plane rotations and robust to minor viewpoint changes. However, the current detectors and descriptors for local image features fail to accommodate out-of-plane rotations larger than 25°–30°. Invariance to such viewpoint changes is essential for numerous applications, including wide baseline matching, 6D pose estimation, and object reconstruction. In this study, we present a general embedding that wraps a detector/descriptor pair in order to increase viewpoint invariance by exploiting input depth maps. The proposed embedding locates smooth surfaces within the input RGB-D images and projects them into a viewpoint invariant representation, enabling the detection and description of more viewpoint invariant features. Our embedding can be utilized with different combinations of descriptor/detector pairs, according to the desired application. Using synthetic and real-world objects, we evaluated the viewpoint invariance of various detectors and descriptors, for both standalone and embedded approaches. While standalone local image features fail to accommodate average viewpoint changes beyond 33.3°, our proposed embedding boosted the viewpoint invariance to different levels, depending on the scene geometry. Objects with distinct surface discontinuities were on average invariant up to 52.8°, and the overall average for all evaluated datasets was 45.4°. Similarly, out of a total of 140 combinations involving 20 local image features and various objects with distinct surface discontinuities, only a single standalone local image feature exceeded the goal of 60° viewpoint difference in just two combinations, as compared with 19 different local image features succeeding in 73 combinations when wrapped in the proposed embedding. Furthermore, the proposed approach operates robustly in the presence of input depth noise, even that of low-cost commodity depth sensors, and well beyond.


Sign in / Sign up

Export Citation Format

Share Document