scholarly journals Deep Learning-Based Estimation of Reverberant Environment for Audio Data Augmentation

Sensors ◽  
2022 ◽  
Vol 22 (2) ◽  
pp. 592
Author(s):  
Deokgyu Yun ◽  
Seung Ho Choi

This paper proposes an audio data augmentation method based on deep learning in order to improve the performance of dereverberation. Conventionally, audio data are augmented using a room impulse response, which is artificially generated by some methods, such as the image method. The proposed method estimates a reverberation environment model based on a deep neural network that is trained by using clean and recorded audio data as inputs and outputs, respectively. Then, a large amount of a real augmented database is constructed by using the trained reverberation model, and the dereverberation model is trained with the augmented database. The performance of the augmentation model was verified by a log spectral distance and mean square error between the real augmented data and the recorded data. In addition, according to dereverberation experiments, the proposed method showed improved performance compared with the conventional method.

2021 ◽  
Vol 11 (15) ◽  
pp. 7148
Author(s):  
Bedada Endale ◽  
Abera Tullu ◽  
Hayoung Shi ◽  
Beom-Soo Kang

Unmanned aerial vehicles (UAVs) are being widely utilized for various missions: in both civilian and military sectors. Many of these missions demand UAVs to acquire artificial intelligence about the environments they are navigating in. This perception can be realized by training a computing machine to classify objects in the environment. One of the well known machine training approaches is supervised deep learning, which enables a machine to classify objects. However, supervised deep learning comes with huge sacrifice in terms of time and computational resources. Collecting big input data, pre-training processes, such as labeling training data, and the need for a high performance computer for training are some of the challenges that supervised deep learning poses. To address these setbacks, this study proposes mission specific input data augmentation techniques and the design of light-weight deep neural network architecture that is capable of real-time object classification. Semi-direct visual odometry (SVO) data of augmented images are used to train the network for object classification. Ten classes of 10,000 different images in each class were used as input data where 80% were for training the network and the remaining 20% were used for network validation. For the optimization of the designed deep neural network, a sequential gradient descent algorithm was implemented. This algorithm has the advantage of handling redundancy in the data more efficiently than other algorithms.


Electronics ◽  
2019 ◽  
Vol 8 (5) ◽  
pp. 554 ◽  
Author(s):  
Rashmi Sharan Sinha ◽  
Sang-Moon Lee ◽  
Minjoong Rim ◽  
Seung-Hoon Hwang

In this paper, we propose two data augmentation schemes for deep learning architecture that can be used to directly estimate user location in an indoor environment using mobile phone tracking and electronic fingerprints based on reference points and access points. Using a pretrained model, the deep learning approach can significantly reduce data collection time, while the runtime is also significantly reduced. Numerical results indicate that an augmented training database containing seven days’ worth of measurements is sufficient to generate acceptable performance using a pretrained model. Experimental results find that the proposed augmentation schemes can achieve a test accuracy of 89.73% and an average location error that is as low as 2.54 m. Therefore, the proposed schemes demonstrate the feasibility of data augmentation using a deep neural network (DNN)-based indoor localization system that lowers the complexity required for use on mobile devices.


2019 ◽  
Author(s):  
◽  
Peng Sun

[ACCESS RESTRICTED TO THE UNIVERSITY OF MISSOURI AT REQUEST OF AUTHOR.] With the widespread usage of many different types of sensors in recent years, large amounts of diverse and complex sensor data have been generated and analyzed to extract useful information. This dissertation focuses on two types of data: aerial images and physiological sensor data. Several new methods have been proposed based on deep learning techniques to advance the state-of-the-art in analyzing these data. For aerial images, a new method for designing effective loss functions for training deep neural networks for object detection, called adaptive salience biased loss (ASBL), has been proposed. In addition, several state-of-the-art deep neural network models for object detection, including RetinaNet, UNet, Yolo, etc., have been adapted and modified to achieve improved performance on a new set of real-world aerial images for bird detection. For physiological sensor data, a deep learning method for alcohol usage detection, called Deep ADA, has been proposed to improve the automatic detection of alcohol usage (ADA) system, which is statistical data analysis pipeline to detect drinking episodes based on wearable physiological sensor data collected from real subjects. Object detection in aerial images remains a challenging problem due to low image resolutions, complex backgrounds, and variations of sizes and orientations of objects in images. The new ASBL method has been designed for training deep neural network object detectors to achieve improved performance. ASBL can be implemented at the image level, which is called image-based ASBL, or at the anchor level, which is called anchor-based ASBL. The method computes saliency information of input images and anchors generated by deep neural network object detectors, and weights different training examples and anchors differently based on their corresponding saliency measurements. It gives complex images and difficult targets more weights during training. In our experiments using two of the largest public benchmark data sets of aerial images, DOTA and NWPU VHR-10, the existing RetinaNet was trained using ASBL to generate an one-stage detector, ASBL-RetinaNet. ASBL-RetinaNet significantly outperformed the original RetinaNet by 3.61 mAP and 12.5 mAP on the two data sets, respectively. In addition, ASBL-RetinaNet outperformed 10 other state-of-art object detection methods. To improve bird detection in aerial images, the Little Birds in Aerial Imagery (LBAI) dataset has been created from real-life aerial imagery data. LBAI contains various flocks and species of birds that are small in size, ranging from 10 by 10 pixel to 40 by 40 pixel. The dataset was labeled and further divided into two subsets, Easy and Hard, based on the complex of background. We have applied and improved some of the best deep learning models to LBAI images, including object detection techniques, such as YOLOv3, SSD, and RetinaNet, and semantic segmentation techniques, such as U-Net and Mask R-CNN. Experimental results show that RetinaNet performed the best overall, outperforming other models by 1.4 and 4.9 F1 scores on the Easy and Hard LBAI dataset, respectively. For physiological sensor data analysis, Deep ADA has been developed to extract features from physiological signals and predict alcohol usage of real subjects in their daily lives. The features extracted are using Convolutional Neural Networks without any human intervention. A large amount of unlabeled data has been used in an unsupervised learning matter to improve the quality of learned features. The method outperformed traditional feature extraction methods by up to 19% higher accuracy.


2021 ◽  
Author(s):  
Debmitra Ghosh

Abstract SARS-CoV-2 or severe acute respiratory syndrome coronavirus 2 is considered to be the cause of Coronavirus (COVID-19) which is a viral disease. The rapid spread of COVID-19 is having a detrimental effect on the global economy and health. A chest X-ray of infected patients can be considered as a crucial step in the battle against COVID-19. On retrospections, it is found that abnormalities exist in chest X-rays of patients suggestive of COVID-19. This sparked the introduction of a variety of deep learning systems and studies which have shown that the accuracy of COVID-19 patient detection through the use of chest X-rays is strongly optimistic. Although there are certain shortcomings like deep learning networks like convolutional neural networks (CNNs) need a substantial amount of training data but the outbreak is recent, so it is large datasets of radiographic images of the COVID-19 infected patients are not available in such a short time. Here, in this research, we present a method to generate synthetic chest X-ray (CXR) images by developing a Deep Convolution Generative Adversarial Network-based model. In addition, we demonstrate that the synthetic images produced from DCGAN can be utilized to enhance the performance of CNN for COVID-19 detection. Classification using CNN alone yielded 85% accuracy. Although there are several models available, we chose MobileNet as it is a lightweight deep neural network, with fewer parameters and higher classification accuracy. Here we are using a deep neural network-based model to diagnose COVID-19 infected patients through radiological imaging of 5,859 Chest X-Ray images. We are using a Deep Convolutional Neural Network and a pre-trained model “DenseNet 121” for two new label classes (COVID-19 and Normal). To improve the classification accuracy, in our work we have further reduced the number of network parameters by introducing dense blocks that are proposed in DenseNets into MobileNet. By adding synthetic images produced by DCGAN, the accuracy increased to 97%. Our goal is to use this method to speed up COVID-19 detection and lead to more robust systems of radiology.


2020 ◽  
Author(s):  
Dean Sumner ◽  
Jiazhen He ◽  
Amol Thakkar ◽  
Ola Engkvist ◽  
Esben Jannik Bjerrum

<p>SMILES randomization, a form of data augmentation, has previously been shown to increase the performance of deep learning models compared to non-augmented baselines. Here, we propose a novel data augmentation method we call “Levenshtein augmentation” which considers local SMILES sub-sequence similarity between reactants and their respective products when creating training pairs. The performance of Levenshtein augmentation was tested using two state of the art models - transformer and sequence-to-sequence based recurrent neural networks with attention. Levenshtein augmentation demonstrated an increase performance over non-augmented, and conventionally SMILES randomization augmented data when used for training of baseline models. Furthermore, Levenshtein augmentation seemingly results in what we define as <i>attentional gain </i>– an enhancement in the pattern recognition capabilities of the underlying network to molecular motifs.</p>


2020 ◽  
Vol 17 (3) ◽  
pp. 299-305 ◽  
Author(s):  
Riaz Ahmad ◽  
Saeeda Naz ◽  
Muhammad Afzal ◽  
Sheikh Rashid ◽  
Marcus Liwicki ◽  
...  

This paper presents a deep learning benchmark on a complex dataset known as KFUPM Handwritten Arabic TexT (KHATT). The KHATT data-set consists of complex patterns of handwritten Arabic text-lines. This paper contributes mainly in three aspects i.e., (1) pre-processing, (2) deep learning based approach, and (3) data-augmentation. The pre-processing step includes pruning of white extra spaces plus de-skewing the skewed text-lines. We deploy a deep learning approach based on Multi-Dimensional Long Short-Term Memory (MDLSTM) networks and Connectionist Temporal Classification (CTC). The MDLSTM has the advantage of scanning the Arabic text-lines in all directions (horizontal and vertical) to cover dots, diacritics, strokes and fine inflammation. The data-augmentation with a deep learning approach proves to achieve better and promising improvement in results by gaining 80.02% Character Recognition (CR) over 75.08% as baseline.


2019 ◽  
Vol 2019 ◽  
pp. 1-14 ◽  
Author(s):  
Yong He ◽  
Hong Zeng ◽  
Yangyang Fan ◽  
Shuaisheng Ji ◽  
Jianjian Wu

In this paper, we proposed an approach to detect oilseed rape pests based on deep learning, which improves the mean average precision (mAP) to 77.14%; the result increased by 9.7% with the original model. We adopt this model to mobile platform to let every farmer able to use this program, which will diagnose pests in real time and provide suggestions on pest controlling. We designed an oilseed rape pest imaging database with 12 typical oilseed rape pests and compared the performance of five models, SSD w/Inception is chosen as the optimal model. Moreover, for the purpose of the high mAP, we have used data augmentation (DA) and added a dropout layer. The experiments are performed on the Android application we developed, and the result shows that our approach surpasses the original model obviously and is helpful for integrated pest management. This application has improved environmental adaptability, response speed, and accuracy by contrast with the past works and has the advantage of low cost and simple operation, which are suitable for the pest monitoring mission of drones and Internet of Things (IoT).


2020 ◽  
pp. 1-14
Author(s):  
Esraa Hassan ◽  
Noha A. Hikal ◽  
Samir Elmuogy

Nowadays, Coronavirus (COVID-19) considered one of the most critical pandemics in the earth. This is due its ability to spread rapidly between humans as well as animals. COVID_19 expected to outbreak around the world, around 70 % of the earth population might infected with COVID-19 in the incoming years. Therefore, an accurate and efficient diagnostic tool is highly required, which the main objective of our study. Manual classification was mainly used to detect different diseases, but it took too much time in addition to the probability of human errors. Automatic image classification reduces doctors diagnostic time, which could save human’s life. We propose an automatic classification architecture based on deep neural network called Worried Deep Neural Network (WDNN) model with transfer learning. Comparative analysis reveals that the proposed WDNN model outperforms by using three pre-training models: InceptionV3, ResNet50, and VGG19 in terms of various performance metrics. Due to the shortage of COVID-19 data set, data augmentation was used to increase the number of images in the positive class, then normalization used to make all images have the same size. Experimentation is done on COVID-19 dataset collected from different cases with total 2623 where (1573 training,524 validation,524 test). Our proposed model achieved 99,046, 98,684, 99,119, 98,90 In terms of Accuracy, precision, Recall, F-score, respectively. The results are compared with both the traditional machine learning methods and those using Convolutional Neural Networks (CNNs). The results demonstrate the ability of our classification model to use as an alternative of the current diagnostic tool.


Sign in / Sign up

Export Citation Format

Share Document