scholarly journals Evaluating Safety Systems for Machine Tools with Computer Numerical Control using Analytic Hierarchy Process

Safety ◽  
2019 ◽  
Vol 5 (1) ◽  
pp. 14 ◽  
Author(s):  
Sever-Gabriel Racz ◽  
Radu-Eugen Breaz ◽  
Lucian-Ionel Cioca

Computer numerical control (CNC) machine tools are complex production systems with fully automatic machine parts. Nowadays, high feed rates and machining speeds are used during the machining process. Human operators are still needed to set-up the machine, load/unload workpieces and parts, load the machining code, and supervise the machining process. The operators work in an environment where automated high-speed motions occur, and consequently, CNC machine tools have to be equipped with safety systems. The approach presented in this paper was to evaluate the main safety systems of CNC machine tools based upon the analytic hierarchy process (AHP). The analyzed systems were divided into six main categories and compared pairwise using five criteria proposed by the authors. The approach and the obtained results significantly relied upon the situation found at the industrial company used as a benchmark for the research. The analysis reveals that, among considered safety devices, manually operated controls are the most efficient ones. Finally, a sensitivity analysis was conducted to test the stability of the AHP solution.

2015 ◽  
Vol 809-810 ◽  
pp. 1504-1509 ◽  
Author(s):  
Ana Lacramioara Ungureanu ◽  
Gheorghe Stan ◽  
Paul Alin Butunoi

In this paper are proposed two new approaches to maintenance strategies for Computer Numerical Control (CNC) machine tools. The analysis is done for different families of CNC machine tools from S.C. Elmet Bacau, a company specialized in aviation. In maintenance actions applied to CNC machine tools is very important to know the evolution of defects and critical state of electrical and mechanical components. The results of this analysis concludes that maintenance actions can be judged by the developing time period diagram, between failure appearance and interruptions in operation. It is also analyzed the financial impact, revealed from known maintenance strategies adopted on CNC machine tools, resulting in a positive approach of condition based maintenance.


Sensors ◽  
2019 ◽  
Vol 19 (20) ◽  
pp. 4506 ◽  
Author(s):  
Hyungjung Kim ◽  
Woo-Kyun Jung ◽  
In-Gyu Choi ◽  
Sung-Hoon Ahn

In the new era of manufacturing with the Fourth Industrial Revolution, the smart factory is getting much attention as a solution for the factory of the future. Despite challenges in small and medium-sized enterprises (SMEs), such as short-term strategies and labor-intensive with limited resources, they have to improve productivity and stay competitive by adopting smart factory technologies. This study presents a novel monitoring approach for SMEs, KEM (keep an eye on your machine), and using a low-cost vision, such as a webcam and open-source technologies. Mainly, this idea focuses on collecting and processing operational data using cheaper and easy-to-use components. A prototype was tested with the typical 3-axis computer numerical control (CNC) milling machine. From the evaluation, availability of using a low-cost webcam and open-source technologies for monitoring of machine tools was confirmed. The results revealed that the proposed system is easy to integrate and can be conveniently applied to legacy machine tools on the shop floor without a significant change of equipment and cost barrier, which is less than $500 USD. These benefits could lead to a change of monitoring operations to reduce time in operation, energy consumption, and environmental impact for the sustainable production of SMEs.


2017 ◽  
Vol 139 (7) ◽  
Author(s):  
Kory Chang ◽  
Masakazu Soshi

Sliding guideways are often used as the foundation for linear motion in computer numerical control (CNC) machine tools due to their high damping capabilities especially for heavy duty machining applications. However, the traditional manufacturing process with grinding is time-consuming, and the product’s sliding performance has not been optimized nor clearly understood. In order to increase productivity, a machining center based manufacturing method with cubic boron nitride (CBN) milling tools was introduced and tested by researchers. While greatly reducing manufacturing time and cost, a rougher milled surface, in comparison to traditional grinding, is a possible concern for the performance as well as the life of sliding guideways. In this study, a novel planar honing process was proposed as a postprocess of CBN milling to create a finish surface on hardened cast iron sliding guideways used for CNC machine tools. A design of experiment (DOE) was conducted to statistically understand significant factors in the machining process and their relationship with surface topography. Effective planar honing conditions were discovered and analyzed with three-dimensional (3D) and two-dimensional surface parameters.


2013 ◽  
Vol 446-447 ◽  
pp. 645-649
Author(s):  
Jie Yu ◽  
Wu Sheng Tang ◽  
Ting Ting Wang ◽  
Qiao Chan Li ◽  
Zhan Guo Li

Reliability is most important to the CNC machine tools and reliability estimation is a very important part of the reliability which has magnificence to allocate resources and put forward scientific policy. Reliability evaluation of computer numerical control machine tools can use all sorts of effective information to decrease the size of test samples and save the development costs and shorten the production cycle. The paper put forward to use D-S evidence theory and the information of experts system to decrease the uncertainty of the reliability evaluation of computer numerical control machine tools. The results show that the method can effectively decrease the uncertainty of the reliability evaluation of computer numerical control machine tools.


Safety ◽  
2021 ◽  
Vol 7 (2) ◽  
pp. 27
Author(s):  
Lucian-Ionel Cioca ◽  
Radu-Eugen Breaz ◽  
Sever-Gabriel Racz

Machining operations on computer numerically controlled (CNC) machine tools are essential for the machining industry. Most of these operations take place in machining workshops. Safety issues in machining workshops shops can affect not only the health of the operators, which is extremely important, but also the productivity of the process and the accuracy of the parts. The research presented in this article addresses the issue of evaluating the safety of a CNC machining workshop, using a combined approach based on the analytic hierarchy process (AHP) and technique for order performance by similarity to ideal solution (TOPSIS) methods. A set of four evaluation criteria was proposed and the methods of processing the information for each criterion were used to extract the significant data needed for the evaluation. The proposed method was used to select the safest CNC machining workshop out of a total of three considered for assessment.


Safety ◽  
2020 ◽  
Vol 6 (1) ◽  
pp. 10
Author(s):  
Sever-Gabriel Racz ◽  
Radu-Eugen Breaz ◽  
Lucian-Ionel Cioca

CNC (computer numerically controlled) machine tools are highly advanced technological systems, used to machine parts by means of metal cutting processes. Their structure and kinematics are very complex, involving accurate coordinated motions on three to five axes. Operating CNC machine tools is a complicated process, which can easily be affected by errors. Nowadays, safety systems and devices are developed in order to make this process safer and more user friendly. Modern CNC controllers are designed to deal with obvious sources of hazards, such as overloads (by means of various sensor systems) and collisions (by checking the NC code syntax and simulating it on the machine). However, despite of these safety systems, various unwanted events still occur during machining operations on CNC machine tools. These means that there are still certain hazards, not so obvious, which can severely affect the operation of CNC machine tools. This work tries to identify and hierarchize the above-mentioned hazards by using an AHP (analytic hierarchy process) approach. The results of the AHP emphasize which hazard has the biggest influence upon the CNC machine tools operation and consequently should be avoided. The results of this work could be used by the machine tools designers to develop new safety features for the existing CNC controllers. Also, the users of the machine tools could focus some of the safety measures during the machining process upon the most significant hazards pointed by the results of the research.


Materials ◽  
2021 ◽  
Vol 14 (11) ◽  
pp. 2913
Author(s):  
Rafał Gołębski ◽  
Piotr Boral

Classic methods of machining cylindrical gears, such as hobbing or circumferential chiseling, require the use of expensive special machine tools and dedicated tools, which makes production unprofitable, especially in small and medium series. Today, special attention is paid to the technology of making gears using universal CNC (computer numerical control) machine tools with standard cheap tools. On the basis of the presented mathematical model, a software was developed to generate a code that controls a machine tool for machining cylindrical gears with straight and modified tooth line using the multipass method. Made of steel 16MnCr5, gear wheels with a straight tooth line and with a longitudinally modified convex-convex tooth line were machined on a five-axis CNC milling machine DMG MORI CMX50U, using solid carbide milling cutters (cylindrical and ball end) for processing. The manufactured gears were inspected on a ZEISS coordinate measuring machine, using the software Gear Pro Involute. The conformity of the outline, the tooth line, and the gear pitch were assessed. The side surfaces of the teeth after machining according to the planned strategy were also assessed; the tests were carried out using the optical microscope Alicona Infinite Focus G5 and the contact profilographometer Taylor Hobson, Talysurf 120. The presented method is able to provide a very good quality of machined gears in relation to competing methods. The great advantage of this method is the use of a tool that is not geometrically related to the shape of the machined gear profile, which allows the production of cylindrical gears with a tooth and profile line other than the standard.


2011 ◽  
Vol 105-107 ◽  
pp. 2217-2220
Author(s):  
Mu Lan Wang ◽  
Jian Min Zuo ◽  
Kun Liu ◽  
Xing Hua Zhu

In order to meet the development demands for high-speed and high-precision of Computer Numerical Control (CNC) machine tools, the equipped CNC systems begin to employ the technical route of software hardening. Making full use of the advanced performance of Large Scale Integrated Circuits (LSIC), this paper puts forward using Field Programmable Gates Array (FPGA) for the functional modules of CNC system, which is called Intelligent Software Hardening Chip (ISHC). The CNC system architecture with high performance is constructed based on the open system thought and ISHCs. The corresponding programs can be designed with Very high speed integrate circuit Hardware Description Language (VHDL) and downloaded into the FPGA. These hardening modules, including the arithmetic module, contour interpolation module, position control module and so on, demonstrate that the proposed schemes are reasonable and feasibility.


Sign in / Sign up

Export Citation Format

Share Document