scholarly journals IoT-Based Implementation of Field Area Network Using Smart Grid Communication Infrastructure

Smart Cities ◽  
2018 ◽  
Vol 1 (1) ◽  
pp. 176-189 ◽  
Author(s):  
Lipi Chhaya ◽  
Paawan Sharma ◽  
Adesh Kumar ◽  
Govind Bhagwatikar

A power grid is a network that carries electrical energy from power plants to customer premises. One existing power grid is going through a massive and revolutionary transformation process. It is envisioned to achieve the true meaning of technology as “technology for all.” Smart grid technology is an inventive and futuristic approach for improvement in existing power grids. Amalgamation of existing electrical infrastructure with information and communication network is an inevitable requirement of smart grid deployment and operation. The key characteristics of smart grid technology are full duplex communication, advanced metering infrastructure, integration of renewable and alternative energy resources, distribution automation and absolute monitoring, and control of the entire power grid. Smart grid communication infrastructure consists of heterogeneous and hierarchical communication networks. Various layers of smart grid deployment involve diverse sets of wired and wireless communication standards. Application of smart grids can be realized in the facets of energy utilization. Smart grid communication architecture can be used to explore intelligent agriculture applications for the proficient nurturing of various crops. The utilization, monitoring, and control of various renewable energy resources are the most prominent features of smart grid infrastructure for agriculture applications. This paper describes an implementation of an IoT-based wireless energy management system and the monitoring of weather parameters using a smart grid communication infrastructure. A graphical user interface and dedicated website was developed for real-time execution of the developed prototype. The prototype described in this paper covers a pervasive communication infrastructure for field area networks. The design was validated by testing the developed prototype. For practical implementation of the monitoring of the field area network, multiple sensors units were placed for data collection for better accuracy and the avoidance of estimation error. The developed design uses one sensor and tested it for IoT applications. The prototype was validated for local and wide area networks. Most of the present literature depicts a design of various systems using protocols such as IEEE 802.15.1 and IEEE 802.15.4, which either provide restricted access in terms of area or have lower data rates. The protocols used in developed system such as IEEE 802.11 and IEEE 802.3 provide ubiquitous coverage as well as high data rates. These are well-established and proven protocols for Internet applications and data communication but less explored for smart grid applications. The work depicted in this paper provides a solution for all three smart grid hierarchical networks such as home/field area networks, neighborhood area networks, and wide area networks using prototype development and testing. It lays a foundation for actual network design and implementation. The designed system can be extended for multiple sensor nodes for practical implementation in field area networks for better accuracy and in the case of node failure.

2013 ◽  
Vol 749 ◽  
pp. 603-605
Author(s):  
You Jie Ma ◽  
Pan Long Jin ◽  
Xue Song Zhou

Modern power grid is an important part of national energy strategy. Smart grid is one of the directions to modernize the electricity grid. Smart grid is the intelligent of power system, It is also known as the grid 2.0.It is based on integrated, high-speed bidirectional communication network ,It use the advanced sensor and measuring technology, use advanced equipment and control method to realize the application of the power grid reliability, safety, economic, efficient, environmental friendly and safety. High speed, bidirectional, real-time, and integrated communication system is the foundation and key point when monitoring and control smart grid. So How to improve the communication technology is very important.


Author(s):  
Payal Soni ◽  
J. Subhashini

India’s electrical power system grid also known as the power grid is serving us from a very long time. In this duration, there were no major developments or changes reported in the power grid system. Electrical power consumer demand is increasing drastically and the present grid system is not able to fulfil these emerging requirements. To fulfil the requirements of future power load, we need a modified system which has to be reliable, secure, intelligent and efficient. By converting the power grid into the smart grid will be a promising solution for adopting the above properties. Communication Infrastructure is a major part of the smart grid. The end-user can reduce their expenditure on electricity demand by using smart home appliance, to keep away from the rush hours and also make use of the renewable energy instead from utility, is a great example of deployment of internet of things (IoT) in grid communication. In this paper, we have provided a survey of different communication technology, applications, benefits and challenges in communication infrastructure, spatially IoT.


2018 ◽  
Vol 7 (3.12) ◽  
pp. 945 ◽  
Author(s):  
Abul Khair ◽  
Mohd Rihan ◽  
Mohd Zuhaib

With increase in deregulations and renewable sources of generation, the power system network is leading towards more geographical spread and interconnectedness. This causes significant challenges requiring on-line monitoring and control. It also provides a path for disturbances to propagate causing cascading failure, even blackouts. Wide area detection of potential island formation and controlled separation is considered as an effective tool against a blackout under severe disturbances. In the present work one line remaining algorithm has been utilized for implementation of controlled islanding in a section of Indian power grid.  


Author(s):  
Lipi Chhaya ◽  
Paawan Sharma ◽  
Govind Bhagwatikar ◽  
Adesh Kumar

An existing power grid is going through a massive transformation. Smart grid technology is a radical approach for improvisation in prevailing power grid. Integration of electrical and communication infrastructure is inevitable for the deployment of Smart grid network. Smart grid technology is characterized by full duplex communication, automatic metering infrastructure, renewable energy integration, distribution automation and complete monitoring and control of entire power grid. Wireless sensor networks (WSNs) are small micro electrical mechanical systems which are accomplished to collect and communicate the data from surroundings. WSNs can be used for monitoring and control of smart grid assets. Security of wireless sensor based communication network is a major concern for researchers and developers. The limited processing capabilities of wireless sensor networks make them more vulnerable to cyber-attacks. The countermeasures against cyber-attacks must be less complex with an ability to offer confidentiality, data readiness and integrity. The address oriented design and development approach for usual communication network requires a paradigm shift to design data oriented WSN architecture. WSN security is an inevitable part of smart grid cyber security. This paper is expected to serve as a comprehensive assessment and analysis of communication standards, cyber security issues and solutions for WSN based smart grid infrastructure.


Author(s):  
Lipi Chhaya ◽  
Paawan Sharma ◽  
Govind Bhagwatikar ◽  
Adesh Kumar

An existing power grid is going through a massive transformation. Smart grid technology is a radical approach for improvisation in prevailing power grid. Integration of electrical and communication infrastructure is inevitable for the deployment of Smart grid network. Smart grid technology is characterized by full duplex communication, automatic metering infrastructure, renewable energy integration, distribution automation and complete monitoring and control of entire power grid. Wireless sensor networks (WSNs) are small micro electrical mechanical systems which are capable to collect and communicate the data from surroundings. WSNs can be used for monitoring and control of smart grid assets. Security of wireless sensor based communication network is a major concern for researchers and developers. The limited processing capabilities of wireless sensor networks make them more vulnerable to cyber-attacks. The countermeasures against cyber-attacks must be less complex with ability to offer confidentiality, data readiness and integrity. The address oriented design and development approach for usual communication networks requires a paradigm shift to design data oriented WSN architecture. This paper describes communication standards, various cyber-attacks and their solutions. WSN security is an inevitable part of smart grid cyber security. This paper is expected to serve as a comprehensive assessment and analysis of communication standards, cyber security issues and solutions for WSN based smart grid infrastructure.


Author(s):  
Bhargav Appasani ◽  
Amitkumar Vidyakant Jha ◽  
Sunil Kumar Mishra ◽  
Abu Nasar Ghazali

AbstractReal time monitoring and control of a modern power system has achieved significant development since the incorporation of the phasor measurement unit (PMU). Due to the time-synchronized capabilities, PMU has increased the situational awareness (SA) in a wide area measurement system (WAMS). Operator SA depends on the data pertaining to the real-time health of the grid. This is measured by PMUs and is accessible for data analytics at the data monitoring station referred to as the phasor data concentrator (PDC). Availability of the communication system and communication delay are two of the decisive factors governing the operator SA. This paper presents a pragmatic metric to assess the operator SA and ensure optimal locations for the placement of PMUs, PDC, and the underlying communication infrastructure to increase the efficacy of operator SA. The uses of digital elevation model (DEM) data of the surface topography to determine the optimal locations for the placement of the PMU, and the microwave technology for communicating synchrophasor data is another important contribution carried out in this paper. The practical power grid system of Bihar in India is considered as a case study, and extensive simulation results and analysis are presented for validating the proposed methodology.


Sensors ◽  
2021 ◽  
Vol 21 (2) ◽  
pp. 538
Author(s):  
Nicoleta Cristina Gaitan ◽  
Ioan Ungurean

The development of the smart building concept and building automation field is based on the exponential evolution of monitoring and control technologies. Residents of the smart building must interact with the monitoring and control system. A widely used method is specific applications executed on smartphones, tablets, and PCs with Bluetooth connection to the building control system. At this time, smartphones are increasingly used in everyday life for payments, reading newspapers, monitoring activity, and interacting with smart homes. The devices used to build the control system are interconnected through a specific network, one of the most widespread being the Building Automation and Control Network (BACnet) network. Here, we propose the use of the BACnet Application Layer over Bluetooth. We present a proposal of a concept and a practical implementation that can be used to test and validate the operation of the BACnet Application Layer over Bluetooth.


2021 ◽  
Author(s):  
Mohammad S. Yazdi

Smart grid is a utility network, with advanced information and communications technologies for improved control, efficiency, reliability and safety in electric power distribution and management. Smart grid communication network consists of three interconnected communication networks: home area network (HAN), neighborhood area network (NAN), and wide area network (WAN). Our thesis is focused on NAN. The information flow in smart grid communication networks has different Quality of Service (QoS) requirements in terms of packet loss rate, throughput, and latency. By deploying QoS mechanisms, we can get the real time feedbacks which can be used to supply electricity based on need, thus reducing the wastage of electricity. First, we conducted Opnet simulations for NAN. We evaluated two technologies, Zigbee and wireless local area network (WLAN), for NAN. The simulation results demonstrate that latency can be reduced for the data flow with a higher priority with an appropriate QoS mechanism. Next, we proposed an optimal resource allocation scheme to reduce delay and provide differentiated services, in terms of latency, to different classes of traffic in the NAN. The problem is formulated into a linear programming (LP) problem, which can be solved efficiently. The simulation results and comparison demonstrates that the proposed resource allocation scheme can provide overall lower latency of the various data flows. Our method also lowers the delay of the data flow with a higher priority.


Sign in / Sign up

Export Citation Format

Share Document