scholarly journals Evaluating the Impacts of Integrated Pollution on Water Quality of the Trans-Boundary Neris (Viliya) River

2018 ◽  
Vol 10 (11) ◽  
pp. 4239 ◽  
Author(s):  
Marina Valentukevičienė ◽  
Lina Bagdžiūnaitė-Litvinaitienė ◽  
Viktoras Chadyšas ◽  
Andrius Litvinaitis

The trans-boundary area between the Europe Union and other countries is highly susceptible to changes in water quality and variations in the potential pollution load that could influence its eco-systems significantly. The Neris (Viliya) River is one of the biggest surface water bodies in Lithuania and Belarus with an ecologically important area protected by international legislation. The study was aimed at evaluating the impacts of integrated pollution on water quality of the Neris River taking into account different storm-water flows and ecological scenarios. For this purpose, qualitative and quantitative statistical evaluation was set up and calculation was done; different integrated pollution loads of the catchment area were estimated. The evaluation considered a decrease in river discharge due to changes in the regional storm-water flow and technological development that should lead to the growing covered surface and a reduction in the untreated storm-water flows. The obtained results indicated that, in the case of storm-water treatment, the total nitrate and phosphate concentrations will decrease, while in the cases of changes in combined suspended solid, the concentration of nutrients will decrease. Thus, a trans-boundary storm-water treatment plant of the Viliya River is required as it should eliminate pollution accumulation and restore its acceptable environmental status. A coordinated international project for the entire catchment of the Neris (Viliya) River based on the specifications and requirements of the EU Water Framework Directive (EU 2000) should be developed and implemented. Subsequently, ecological river-use policies should be established at the international level, which should offer considerable perspectives for the sustainable development of the area.

2019 ◽  
Vol 6 (2) ◽  
pp. 121-138
Author(s):  
Imad Ali Omar

Abstract: Water treatment plant (WTP) is essential for providing clean and safe water to the habitants. There is a necessity to evaluate the performance of (WTP) for proper treatment of raw water. The purpose of the present study is to evaluate the quality of treated water by investigating the performance of Ifraz-2 (WTP) units located in Erbil City, Iraq. For assessment of the (WTP) units, samples were taken for a duration of five months from different locations: raw water (the source), post-clarification processes, post-filtration processes, and from the storage tank. Removal efficiencies for the units, and for the whole (WTP) were calculated and presented. Obtained removal efficiencies for the sedimentation unit; filtration unit; and the entire Ifraz-2 (WTP) were 91.51 %, 64.71 %, and 97.29 %, respectively. After the process of disinfection and storage, the valued of the turbidity of the treated water were ranged from 1.2 to 9.7 (Nephelometric Turbidity Units) NTU. Besides, water quality index (WQI) for the (WTP) was studied and calculated for 14 physicochemical water quality parameters. WQI for Ifraz-2 (WTP) was 51.87 and it is regarded as a good level. Also, operational problems have been detected and reported during the research period, especially during sedimentation, filtration, and disinfection. Suitable solutions have been reported to the operational team.


2019 ◽  
Vol 1 (2) ◽  
pp. 87-94
Author(s):  
Novika Rukka ◽  
Ton van der Linden ◽  
Mathilde de Jongh ◽  
Luytzen Woudstra

The aim of this research is to elaborate of the impacts on the use of the effluent of the water treatment plant Pinedo in the North of Albufera Natural Park in Valencia, Spain. Interviews and observations were conducted, which together created an Impact Assessment. To be able to see the influence of effluent on the water quality, an observation point in the north was compared to another observation point in the south. Besides that, a boat trip was made to observe the water quality on the lake. The result shows that eutrophication occurs as a cosequence of the wastewater from water treatment. Farmers have no choice and are happy to have a constant source. Fishermen have experienced a disastrous change in the seventies, but now see an improvement of the water quality. Environmentalists are most negative about the effluent inflow. The government understands the concerns and wants a higher quality of the effluent, but they do not have means to improve it. Water treatment plant Pinedo recognizes the corncerns either; however, the water quality already meets the requirements. Forecasting the future, everybody is slightly positive. The improvement of the quality of the effluent is a good thing and should carry on.


2018 ◽  
Vol 5 (2) ◽  
Author(s):  
Heru Dwi Wahjono

The need for clean water in big cities is very dependent on water supply by water companies (PDAM). The increasing demand for clean water in big cities is proportional to the increasing of number population and industry, but not comparable to the clean water supply and quality of raw water available. PDAM has made various efforts to improve the quality of clean water services to the community. One of the effort is to improve the performance of water treatment plant (WTP). To support the improvement of the performance of WTP, required water quality monitoring at the intake location in use. This paper discusses the online and realtime water quality monitoring at the water intake location using a multi-probe digital sensor and GSM technology. This observation data is used as a comparative data analysis of laboratory data on raw water source PDAM Taman Kota (Cengkareng Drain). Keywords: air baku air minum, intake PDAM Taman Kota Cengkareng Drain, pemantuan kualitas air, multi probe digital sensor, teknologi online monitoring, Water Treatment Plant


Author(s):  
S. Booyens ◽  
D. De Vos ◽  
Sandra Barnard ◽  
Leanne Coetzee

The aim of this project was to investigate the influence of the SolarBees and dosage on the water quality at Rietvlei Dam WTP. The difference between the raw and final water samples was less than anticipated due to the drastic improvement in raw water quality of Rietvlei Dam.


Water SA ◽  
2019 ◽  
Vol 45 (3 July) ◽  
Author(s):  
Shalene Janse van Rensburg ◽  
Sandra Barnard ◽  
Marina Krüger

When purifying water for potable use, wastewater is generated, due to the class of the water treatment plant and the quality of the source water. Midvaal Water Company recycled wastewater that included residue from the dissolved air flotation (DAF), sedimentation and filtration processes in an attempt to save water and reduce costs. The aim of this study was to determine functionality and water quality of such a wastewater recycling system. Samples were collected for analysis, at the sections that contributed to the total wastewater system as well as after various treatment processes. The water quality of these samples was determined, as well as the incidences of water quality failures of the final water, to establish whether the recycle stream that enters the plant together with the source water had any impact on the water quality after the different treatment processes. Data were grouped into periods prior to, during and after recycling to enable comparisons. The water quality of the recycle stream was poorer than that of the source water from the Vaal River with regard to the mean values for total chlorophyll, suspended solids, turbidity and dissolved organic carbon, but the sedimentation process of the wastewater system improved the wastewater quality by drastically reducing total chlorophyll, suspended solids and turbidity. The risk-defined compliance for the final water was excellent (≥95%), despite aluminium, turbidity and total chlorophyll failures of the final water quality during the recycling period. Total chlorophyll was identified as the largest risk during wastewater recycling, especially after the filtration process. It is evident from the data that wastewater recycling, which included wastewater from the DAF, into the main inlet stream of the water treatment plant proved to be effective, based on compliance with national legislation, and had no detrimental impact on overall treatment processes or final water quality.


2012 ◽  
Vol 5 (1) ◽  
pp. 75-79 ◽  
Author(s):  
Anna Luptáková ◽  
Karol Munka ◽  
Ján Derco

Increasing of drinking water quality at real water treatment plant by recarbonization process According to the World Health Organization, chemical and microbial contaminants in drinking water will continue in the interest of suppliers of drinking water. The review establishment of new knowledge for drinking water including the potential benefits of the mineral content is necessary. The paper is focused on an assessment of the quality of water from surface source for drinking water preparation and quality of drinking water produced at the real plant. The lab-scale verification of water recarbonization with lime and carbon dioxide was chosen based on the results of full scale plant data analysis. Recarbonization tests were carried out with the raw water and the impact of recarbonization on coagulation process at different coagulant doses was studied. The results show that water recarbonization had adverse influence on the water treatment processes.


2018 ◽  
Vol 1 (1) ◽  
Author(s):  
Benjamin Buysschaert ◽  
Lotte Vermijs ◽  
Agathi Naka ◽  
Nico Boon ◽  
Bart De Gusseme

2019 ◽  
Vol 8 (3) ◽  
pp. 93-101
Author(s):  
Paulami De

This article addresses methods to adjust operating requirements in water treatment plants (WTPs) in order to increase the efficiency of water treatment plants based on the nature of the water inflows into the systems. In the past, various studies have suggested that the quality of water inflow into the WTP has an impact on the efficiency and economic viability of operating treatment plants. Among all other quality parameters, the concentration of dissolved oxygen (DO) is one of the basic indicators about the overall quality of the water. Identification of a temporal pattern can help the engineers to adapt the WTP operations and can save the unnecessary wasting of plant resources. That is why the present article has proposed a new model that can predict the temporal patterns of various chemical parameters with the help of an analytic neuronal network. The model was applied to the case of a WTP that responds to a peri-urban catchment, leading to regular variations in the DO of water inflow. According to the performance metrics utilized the model was able to predict the temporal pattern at a lag of 1 hour.


2010 ◽  
Vol 10 (6) ◽  
pp. 961-968 ◽  
Author(s):  
J. E. Drewes ◽  
J. A. McDonald ◽  
T. Trinh ◽  
M. V. Storey ◽  
S. J. Khan

A pilot-scale plant was employed to validate the performance of a proposed full-scale advanced water treatment plant (AWTP) in Sydney, Australia. The primary aim of this study was to develop a chemical monitoring program that can demonstrate proper plant operation resulting in the removal of priority chemical constituents in the product water. The feed water quality to the pilot plant was tertiary-treated effluent from a wastewater treatment plant. The unit processes of the AWTP were comprised of an integrated membrane system (ultrafiltration, reverse osmosis) followed by final chlorination generating a water quality that does not present a source of human or environmental health concern. The chemical monitoring program was undertaken over 6 weeks during pilot plant operation and involved the quantitative analysis of pharmaceuticals and personal care products, steroidal hormones, industrial chemicals, pesticides, N-nitrosamines and halomethanes. The first phase consisted of baseline monitoring of target compounds to quantify influent concentrations in feed waters to the plant. This was followed by a period of validation monitoring utilising indicator chemicals and surrogate measures suitable to assess proper process performance at various stages of the AWTP. This effort was supported by challenge testing experiments to further validate removal of a series of indicator chemicals by reverse osmosis. This pilot-scale study demonstrated a simplified analytical approach that can be employed to assure proper operation of advanced water treatment processes and the absence of trace organic chemicals.


Sign in / Sign up

Export Citation Format

Share Document