Application of Neurogenetic Modeling in Optimization of Water Treatment Plant Based on the Temporal Monitoring of Water Input Quality

2019 ◽  
Vol 8 (3) ◽  
pp. 93-101
Author(s):  
Paulami De

This article addresses methods to adjust operating requirements in water treatment plants (WTPs) in order to increase the efficiency of water treatment plants based on the nature of the water inflows into the systems. In the past, various studies have suggested that the quality of water inflow into the WTP has an impact on the efficiency and economic viability of operating treatment plants. Among all other quality parameters, the concentration of dissolved oxygen (DO) is one of the basic indicators about the overall quality of the water. Identification of a temporal pattern can help the engineers to adapt the WTP operations and can save the unnecessary wasting of plant resources. That is why the present article has proposed a new model that can predict the temporal patterns of various chemical parameters with the help of an analytic neuronal network. The model was applied to the case of a WTP that responds to a peri-urban catchment, leading to regular variations in the DO of water inflow. According to the performance metrics utilized the model was able to predict the temporal pattern at a lag of 1 hour.

2019 ◽  
Vol 6 (2) ◽  
pp. 121-138
Author(s):  
Imad Ali Omar

Abstract: Water treatment plant (WTP) is essential for providing clean and safe water to the habitants. There is a necessity to evaluate the performance of (WTP) for proper treatment of raw water. The purpose of the present study is to evaluate the quality of treated water by investigating the performance of Ifraz-2 (WTP) units located in Erbil City, Iraq. For assessment of the (WTP) units, samples were taken for a duration of five months from different locations: raw water (the source), post-clarification processes, post-filtration processes, and from the storage tank. Removal efficiencies for the units, and for the whole (WTP) were calculated and presented. Obtained removal efficiencies for the sedimentation unit; filtration unit; and the entire Ifraz-2 (WTP) were 91.51 %, 64.71 %, and 97.29 %, respectively. After the process of disinfection and storage, the valued of the turbidity of the treated water were ranged from 1.2 to 9.7 (Nephelometric Turbidity Units) NTU. Besides, water quality index (WQI) for the (WTP) was studied and calculated for 14 physicochemical water quality parameters. WQI for Ifraz-2 (WTP) was 51.87 and it is regarded as a good level. Also, operational problems have been detected and reported during the research period, especially during sedimentation, filtration, and disinfection. Suitable solutions have been reported to the operational team.


2012 ◽  
Vol 10 (3) ◽  
pp. 465-470 ◽  
Author(s):  
Vinita Rawat ◽  
Sanjay Kumar Jha ◽  
Arundhati Bag ◽  
Monil Singhai ◽  
Chandra Mohan Singh Rawat

A cross-sectional study was conducted to assess the bacteriological quality of water in Haldwani block, Nainital District, India. Stratified random sampling was used to categorize water sources and consumer points. In total, 108 samples were collected: 15 from the Gola river, 51 from water taps, 24 from water treatment plants and 18 from tube wells. Samples were tested for coliforms by the most probable number technique. Identification of species was done by standard procedures. Of 108 water samples, 58.8% were found to be polluted. All samples of water (n = 15) from different sites of the Gola river were found to be highly contaminated. Out of 24 water treatment plant samples, four samples were found unsatisfactory, while more than half (51.6%) of its supplies to water taps were polluted. From tube wells and their water taps, 88.8 and 60% samples were found safe for drinking respectively. Bacterial contamination of water treatment plants and their supplies indicates significant disparities in the efficiency of water treatment processes. Contamination of water taps of tube wells suggests leakage of pipes. There is an urgent need to improve these services to ensure the supply of safe water for consumers.


2013 ◽  
Vol 3 (4) ◽  
pp. 549-556 ◽  
Author(s):  
Kaveh Sookhak Lari ◽  
Morteza Kargar

High-rate lamella settlers in clarifiers and triple media filters have been implemented in Isfahan water treatment plant (known as ‘Baba-Sheikh-Ali’) in Iran to upgrade existing clarification/filtration processes during the recent years. The applied technologies are mainly used to reduce finished water turbidity as the primary regional criterion on water quality. However, application of both technologies faced some operational limitations since they began to work. These problems are due to the existing layout of the process units and available materials. The current study focuses on performance of restricted application of the two technologies with respect to turbidity removal. Online measured turbidity data from a two-year field observation (since March 2010) are used. In particular, results show a more promising and long-term effect on turbidity removal due to tripling filter media rather than application of the lamella settlers in clarifiers. The reasons for these observations are discussed.


2019 ◽  
Vol 100 ◽  
pp. 00019 ◽  
Author(s):  
Renata Gmurkowska

During water treatment a large amount of sludge is created – in the form of sewage and sediments. The largest amounts of sludge are produced during coagulation, ozonation and backwashing rapid filters. The quality and quantity of treated water, the type and dose of used coagulants are factors affecting the quantity, composition and properties of the sludge. Sludge produced during processing of drinking water is important problem and their quantity has been increasing. The study focuses on characteristics of water treatment sludge from four water treatment plants in Cracow. It includes theoretical and experimental part. The first part is based on analysis of literature and information obtained from MPWiK [3]. The second experimental part, concerns the analysis of dry matter, organic dry matter, capillary suction time and visual parameters: the color and consistency of the sludge. Result shows that every sludge contains organic matter. The highest concentrations of organic compounds and the largest diversity has been observed in the sludge collected in the Water Treatment Plant Raba, reaching even up to 70% of organic compounds in the dry mass of sludge.


2018 ◽  
Vol 10 (11) ◽  
pp. 4239 ◽  
Author(s):  
Marina Valentukevičienė ◽  
Lina Bagdžiūnaitė-Litvinaitienė ◽  
Viktoras Chadyšas ◽  
Andrius Litvinaitis

The trans-boundary area between the Europe Union and other countries is highly susceptible to changes in water quality and variations in the potential pollution load that could influence its eco-systems significantly. The Neris (Viliya) River is one of the biggest surface water bodies in Lithuania and Belarus with an ecologically important area protected by international legislation. The study was aimed at evaluating the impacts of integrated pollution on water quality of the Neris River taking into account different storm-water flows and ecological scenarios. For this purpose, qualitative and quantitative statistical evaluation was set up and calculation was done; different integrated pollution loads of the catchment area were estimated. The evaluation considered a decrease in river discharge due to changes in the regional storm-water flow and technological development that should lead to the growing covered surface and a reduction in the untreated storm-water flows. The obtained results indicated that, in the case of storm-water treatment, the total nitrate and phosphate concentrations will decrease, while in the cases of changes in combined suspended solid, the concentration of nutrients will decrease. Thus, a trans-boundary storm-water treatment plant of the Viliya River is required as it should eliminate pollution accumulation and restore its acceptable environmental status. A coordinated international project for the entire catchment of the Neris (Viliya) River based on the specifications and requirements of the EU Water Framework Directive (EU 2000) should be developed and implemented. Subsequently, ecological river-use policies should be established at the international level, which should offer considerable perspectives for the sustainable development of the area.


2019 ◽  
Vol 24 (1) ◽  
pp. 135-163
Author(s):  
Jader Martínez Girón ◽  
Jenny Vanessa Marín-Rivera ◽  
Mauricio Quintero-Angel

Population growth and urbanization pose a greater pressure for the treatment of drinking water. Additionally, different treatment units, such as decanters and filters, accumulate high concentrations of iron (Fe) and manganese (Mn), which in many cases can be discharged into the environment without any treatment when maintenance is performed. Therefore, this paper evaluates the effectiveness of vertical subsurface wetlands for Fe and Mn removal from wastewater in drinking water treatment plants, taking a pilot scale wetland with an ascending gravel bed with two types of plants: C. esculenta and P. australis in El Hormiguero (Cali, Colombia), as an example. The pilot system had three upstream vertical wetlands, two of them planted and the third one without a plant used as a control. The wetlands were arranged in parallel and each formed by three gravel beds of different diameter. The results showed no significant difference for the percentage of removal in the three wetlands for turbidity (98 %), Fe (90 %), dissolved Fe (97 %) and Mn (98 %). The dissolved oxygen presented a significant difference between the planted wetlands and the control. C. esculenta had the highest concentration of Fe in the root with (103.5 ± 20.8) µg/g ; while P. australis had the highest average of Fe concentrations in leaves and stem with (45.7 ± 24) µg/g and (41.4 ± 9.1) µg/g, respectively. It is concluded that subsurface wetlands can be an interesting alternative for wastewater treatment in the maintenance of drinking water treatment plants. However, more research is needed for the use of vegetation or some technologies for the removal or reduction of the pollutant load in wetlands, since each drinking water treatment plant will require a treatment system for wastewater, which in turn requires a wastewater treatment system as well.


2018 ◽  
Vol 59 ◽  
pp. 00005
Author(s):  
Barbara Tchórzewska-Cieślak ◽  
Dorota Papciak ◽  
Katarzyna Pietrucha-Urbanik ◽  
Andżelika Pietrzyk

The subject of the work is the analysis and assessment of the risk of biological instability of water. The lack of water stability causes the increased susceptibility of the distribution system to secondary microbial contamination of water and constitutes a hazard for consumers’ health. The risk is expressed as the loss of water supply safety and distinguishes a failure of not meeting certain water quality parameters that can influence physico-chemical parameters and the bacteriological quality of the water supplied to the consumers. In the paper the method of analysing and evaluating the risk of loss of biostability of tap water is presented. The presented analysis was performed on the basis of the operating data from the water treatment plant.


2019 ◽  
Vol 19 (8) ◽  
pp. 2330-2337
Author(s):  
Susumu Hasegawa ◽  
Yasuhiro Tanaka ◽  
Naokazu Wake ◽  
Ryosuke Takagi ◽  
Hideto Matsuyama

Abstract Recently, membrane filtration systems have become increasingly common in drinking water treatment plants. In this industry, preventing membrane fouling is of utmost importance. Many studies on the relationship between raw water components and membrane fouling have been performed in laboratory conditions. However, very few studies have analyzed the components of foulants on the fouled membrane as operated in actual drinking water treatment plants. By analyzing these components in plant-conditions, membrane fouling will be more effectively prevented. In this study, we analyzed the components of foulants extracted with 0.1 N NaOH from a fouled membrane operated in a drinking water treatment plant in Japan. Our analysis revealed that the main foulants were humic substances. In order to dissolve the accumulated humic substances, additional chemical cleaning was attempted with 500 ppm sodium hypochlorite. As a result, it was found that humic substances were dissolved and filtration resistance significantly decreased. Additionally, the removal of inorganic foulants was also greater after chemical cleaning with 500 ppm sodium hypochlorite, as inorganic foulants trapped within humic substances were released to the membrane surface as hydroxides by the additional sodium hypochlorite cleaning and were dissolved by the periodic citric acid cleaning.


2019 ◽  
Vol 27 (1) ◽  
pp. 354-365
Author(s):  
Hussein Hamid Emran Al-Husseini

The important of ground water is increasing in the future as a source of fresh waters; in addition, many countries contain a number of water treatment plants to treat surface water. Using conventional treatment plant in the cities to treat ground water will decrease the cost of ground water treatment and may be help to depend on both surface and ground water supplies. This paper studied the ability of treating ground water by conventional water treatment. The quality of the ground water source is studied in the mention area during study period. The chemical quality of ground water is tested and there is within the standards of drinking water except iron.  The conventional treatment was enhancing quality of treated water by increment of dissolved oxygen concentrations toward optimum value. Water treatment plant was effective for removal of iron from ground water of about 50%, in addition there is an effect of conventional treatment on sulfate removal (sulfate may be increase above standards in some ground water sources). The statistical analysis of data shows there is a correlation between quality parameters of raw and treated water and between iron and sulfate of treated water in the correlation matrix. In addition, confidence test was applied on the correlation coefficients using fisher's transformation .The analysis shows, that there is a positive period (0.244, 0.941) of confidence of 95% of correlation factors of iron and sulfate.


Sign in / Sign up

Export Citation Format

Share Document