scholarly journals Opportunities for Mineral Carbonation in Australia’s Mining Industry

2019 ◽  
Vol 11 (5) ◽  
pp. 1250 ◽  
Author(s):  
Mehdi Azadi ◽  
Mansour Edraki ◽  
Faezeh Farhang ◽  
Jiwhan Ahn

Carbon capture, utilisation and storage (CCUS) via mineral carbonation is an effective method for long-term storage of carbon dioxide and combating climate change. Implemented at a large-scale, it provides a viable solution to harvesting and storing the modern crisis of GHGs emissions. To date, technological and economic barriers have inhibited broad-scale utilisation of mineral carbonation at industrial scales. This paper outlines the mineral carbonation process; discusses drivers and barriers of mineral carbonation deployment in Australian mining; and, finally, proposes a unique approach to commercially viable CCUS within the Australian mining industry by integrating mine waste management with mine site rehabilitation, and leveraging relationships with local coal-fired power station. This paper discusses using alkaline mine and coal-fired power station waste (fly ash, red mud, and ultramafic mine tailings, i.e., nickel, diamond, PGE (platinum group elements), and legacy asbestos mine tailings) as the feedstock for CCUS to produce environmentally benign materials, which can be used in mine reclamation. Geographical proximity of mining operations, mining waste storage facilities and coal-fired power stations in Australia are identified; and possible synergies between them are discussed. This paper demonstrates that large-scale alkaline waste production and mine site reclamation can become integrated to mechanise CCUS. Furthermore, financial liabilities associated with such waste management and site reclamation could overcome many of the current economic setbacks of retrofitting CCUS in the mining industry. An improved approach to commercially viable climate change mitigation strategies available to the mining industry is reviewed in this paper.

2020 ◽  
Vol Special Issue (1) ◽  
Author(s):  
Sugat Tajane ◽  
Manika Kamthan

Mining Industry is often tagged as a polluting sector since it involves since it involves extensive resource exploitation by unsustainable methods. The techniques involved in mining cause tremendous destruction to the environment and health of people living in nearby areas. There is a growing consensus on sustainable and efficient mineral development which will avoid the clash between economic and environmental interests. Deployment of advanced and sustainable technological solutions in the entire mining process, fixing the gaps in its regulatory mechanisms and learning from the successes of specific domestic and international mining operations are certain solutions that have the capacity this sector more productive. The paper provides insights into the problems of mining sector and possible solutions to overcome these problems. It also provides examples of certain best practices adopted by mining corporations for sustainable coal mining. The paper also explores various methods and technologies which can be adopted by Thermal Power Plants to reduce their emissions and simultaneously conserve environment. An empirical study of Dahanu Thermal Power Station located in state of Maharashtra of India has been undertaken for this purpose to study the modern technologies adopted by them to lower their emission levels.


Energies ◽  
2020 ◽  
Vol 13 (23) ◽  
pp. 6365
Author(s):  
Hosein Kalantari ◽  
Seyed Ali Ghoreishi-Madiseh ◽  
Agus P. Sasmito

Mining operations in remote locations rely heavily on diesel fuel for the electricity, haulage and heating demands. Such significant diesel dependency imposes large carbon footprints to these mines. Consequently, mining companies are looking for better energy strategies to lower their carbon footprints. Renewable energies can relieve this over-reliance on fossil fuels. Yet, in spite of their many advantages, renewable systems deployment on a large scale has been very limited, mainly due to the high battery storage system. Using hydrogen for energy storage purposes due to its relatively cheaper technology can facilitate the application of renewable energies in the mining industry. Such cost-prohibitive issues prevent achieving 100% penetration rate of renewables in mining applications. This paper offers a novel integrated renewable–multi-storage (wind turbine/battery/fuel cell/thermal storage) solution with six different configurations to secure 100% off-grid mining power supply as a stand-alone system. A detailed comparison between the proposed configurations is presented with recommendations for implementation. A parametric study is also performed, identifying the effect of different parameters (i.e., wind speed, battery market price, and fuel cell market price) on economics of the system. The result of the present study reveals that standalone renewable energy deployment in mine settings is technically and economically feasible with the current market prices, depending on the average wind speed at the mine location.


Subject Outlook for the mining sector. Significance Encouraged by this year’s price increases for most of Peru’s mineral exports, the government is seeking to push ahead with plans to attract much-needed foreign investment into the mining industry. This will involve politically contentious moves to deregulate some of the cumbersome procedures that affect investors. Impacts Next year’s growth target of 4% is probably over-optimistic. Social and environmental protests will add to the costs of mining investment in Peru. Once opposition has emerged to projects, it will prove difficult to reverse. Climate change will accentuate problems of water shortage for mining operations.


2012 ◽  
Vol 2012 ◽  
pp. 1-11 ◽  
Author(s):  
Oscar Daniel Salomón ◽  
María Gabriela Quintana ◽  
Andrea Verónica Mastrángelo ◽  
María Soledad Fernández

Vector-borne diseases closely associated with the environment, such as leishmaniases, have been a usual argument about the deleterious impact of climate change on public health. From the biological point of view interaction of different variables has different and even conflicting effects on the survival of vectors and the probability transmission of pathogens. The results on ecoepidemiology of leishmaniasis in Argentina related to climate variables at different scales of space and time are presented. These studies showed that the changes in transmission due to change or increase in frequency and intensity of climatic instability were expressed through changes in the probability of vector-human reservoir effective contacts. These changes of contact in turn are modulated by both direct effects on the biology and ecology of the organisms involved, as by perceptions and changes in the behavior of the human communities at risk. Therefore, from the perspective of public health and state policy, and taking into account the current nonlinear increased velocity of climate change, we concluded that discussing the uncertainties of large-scale models will have lower impact than to develop-validate mitigation strategies to be operative at local level, and compatibles with sustainable development, conservation biodiversity, and respect for cultural diversity.


2015 ◽  
Vol 15 (1) ◽  
pp. 34-47 ◽  
Author(s):  
Suthirat Kittipongvises

Abstract There is presently overwhelming scientific consensus that global climate change is indeed occurring, and that human activities are the primary driver. An increasingly resource and carbon constrained world will continue to pose formidable challenges to major industries, including mining. Understanding the implications of climate change mitigation for the mining industry, however, remains limited. This paper presents the results of a feasibility study on the implementation of a clean development mechanism and greenhouse gases (GHGs) emission reductions in the gold mining industry. It draws upon and extends the analysis of a case study conducted on gold mining operations in Thailand. The results from the case study indicated that total GHGs emissions by company A were approximately 36,886 tons carbon dioxide equivalents (tCO2e) per annual gold production capacity that meet the eligibility criteria for small-scaled clean development mechanism (CDM) projects. The electrostatic separation process was found to release the lowest amount of GHGs, whereas comminution (i.e. crushing and grinding) generated the highest GHGs emissions. By scope, the emission from purchased electricity (scope 2) is the most significant source. Opportunities for CDM projects implementation in the gold mining sector can be found in employing energy efficiency measures. Through innovation, some technical efficiency and technological development in gold processing (i.e. high pressure grinding rolls (HPGR), vertical roller mills (VRM), gravity pre-concentration and microwave heating technologies) that have the potential to reduce energy use and also lower carbon footprint of the gold mining were further discussed. The evidence reviews found that HPGR and VRM abatement technologies have shown energy and climate benefits as electricity savings and CO2 reduction of about 8-25.93 kWh/ton ore processed and 1.8-26.66 kgCO2/ton ore processed, respectively. Implications for further research and practice were finally raised.


2019 ◽  
Vol 4 (3) ◽  
pp. 38 ◽  
Author(s):  
Mavrommatis ◽  
Damigos ◽  
Mirasgedis

Changing climate conditions affect mining operations all over the world, but so far, the mining sector has focused primarily on mitigation actions. Nowadays, there exists increasing recognition of the need for planned adaptation actions. To this end, the development of a practical tool for the assessment of climate change-related risks to support the mining community is deemed necessary. In this study, a comprehensive framework is proposed for climate change multi-risk assessment at the local level customized for the needs of the mining industry. The framework estimates the climate change risks in economic terms by modeling the main activities that a mining company performs, in a probabilistic model, using Bayes’ theorem. The model permits incorporating inherent uncertainty via fuzzy logic and is implemented in two versatile ways: as a discrete Bayesian network or as a conditional linear Gaussian network. This innovative quantitative methodology produces probabilistic outcomes in monetary values estimated either as percentage of annual loss revenue or net loss/gains value. Finally, the proposed framework is the first multi-risk methodology in the mining context that considers all the relevant hazards caused by climate change extreme weather events, which offers a tool for selecting the most cost-effective action among various adaptation strategies.


2018 ◽  
Author(s):  
Eugene C. Cordero ◽  
Diana Centeno ◽  
Anne Marie Todd

AbstractStrategies to mitigate climate change often center on clean technologies such as electric vehicles and solar panels, while the mitigation potential of a quality educational experience is rarely discussed. In this paper, we investigate the long-term impact that an intensive one-year university course had on individual carbon emissions by surveying students at least five years after having taken the course. A majority of course graduates reported pro-environmental decisions (i.e., type of car to buy, food choices) that can be attributed to experiences gained in the course. Furthermore, our carbon footprint analysis demonstrates that for the average course graduate, these decisions reduced their individual carbon emissions by 2.86 tons of CO2 per year. Focus group interviews identify that course graduates have developed a strong personal connection to climate change solutions, and this is realized in their daily behaviors and through their professional careers. The paper discusses in more detail the specific components of the course that are believed to be most impactful, and it shares preliminary outcomes from similar curriculum designs that are being used with K-12 students. Our analysis also demonstrates that if similar education programs were applied at scale, the potential reductions in carbon emissions would be of similar magnitude to other large-scale mitigation strategies such as rooftop solar or electric vehicles.


Author(s):  
George Tackie

This paper analyses environmental accountability practices (EAP) in the mining sector from the perspectives of multi-stakeholders. The study adopts a purely qualitative approach to research in terms of research method, data collection and data analysis. Interview data was gathered from a sample of twenty-one predominantly large-scale mining firms in Ghana. Based on responses from the interview respondents, themes from the literature and empirical material, stakeholders’ perspectives were analysed regarding (1) motivations for EAP; (2) effectiveness of EAP; (3) performance assessment based on EAP; and (4) stakeholder engagements regarding EAP. This paper analyses EAP in Ghana’s mining industry from the viewpoint of multi-stakeholders – regulatory bodies, mining companies, environmental managers, community partners, environmental consultants, and mining association. The findings reveal the commonality of acceptable and responsible EAP that can lead to a ‘win-win’ situation for all stakeholders in the mining industry. Mining firms should increase their focus on practicing value-added EAP in all facets of mining operations. They should also strengthen their engagement with indigenes, and not only local elites, and align their EAP efforts with the immediate needs of the local communities. The novelty of this paper is the determination of the drivers (the ‘why’), outputs (the ‘how’), and outcomes (the benefits) of EAP which is missing in the EAP literature.


2021 ◽  
Author(s):  
Gabriel Perez ◽  
Liliana Pagliero ◽  
Neil McIntyre ◽  
Douglas Aitken ◽  
Diego Rivera

<p>Climate change poses significant challenges for many industrial activities around the world, including mining. Changes in precipitation patterns and the increasing frequency of extreme weather events can trigger severe droughts or flash floods that can easily disrupt the minerals value-chain and increase environmental pollution risks. This research focuses on evaluating climate change risks faced by the mining industry in Chile during the period 2035-2065 under the assumptions of the RCP 8.5 scenario (business as usual).  This research presents risk maps, at the national scale, based on different databases that describe the location and characteristics of the mining infrastructure and spatiotemporal analysis of daily precipitation changes between present climate conditions and future predictions. The present climate conditions are depicted by historical observations for the period 1980-2010 while the future predictions are represented by an ensemble of 34 downscaled Global Circulation Models (GCMs) from the CMIP5.  On one hand, the results show that mining operations located in northern and central Chile (Atacama, Coquimbo and Valparaiso regions), will face significant flash flood risks due to the predicted increase of extreme precipitation events for 2035-2065. On the other hand, the results suggest that mining operations located in the regions of Coquimbo, Valparaiso, Biobio, Libertador G.B.O, and Metropolitan area of Santiago are those under the most significant risks due to droughts. The results obtained in this research are part of a more comprehensive project titled “Climate Risk Atlas of Chile”, developed by the Center for Climate and Resilience Research (CR2) and the Center for Global Change of Universidad Católica de Chile (https://arclim.mma.gob.cl/), which analyses the risks of climate change for different industries of the Chilean economy.</p>


Author(s):  
Dieudonné Kabombo ◽  
Dariush Azizi ◽  
Réjean Hébert ◽  
Faïçal Larachi

Abstract Revalorization of mining residues is of central concerns to the mining industry and the environment. Specifically, environmental management of residual products from the exploitation of chrysotile in the Thetford Mines region is one of the government concerns in Quebec and Canada. This work uses mining wastes in a second resource generation for production of magnesium from cheap and health-friendly mineral sources; the goal being to produce chrysotile-depleted pre-concentrates for a use as precursors in the leach off extraction of magnesium. The concentration of lizardite/antigorite from chrysotile containing serpentine rock mine tailings originating from the Carey Mine site in East-Broughton (Québec) was carried out using a suite of hydrocyclone, settling/decantation and magnetic separations. Four size classes of the mining residue, namely (−3150,+1580), (−1580, +600), (−600, +300) and (−300, +150) μm, were tested with an aim to reduce the level of objectionable asbestos fibers to allow access to the safer Mg-bearing minerals contained in the mine waste sources. The asbestos fibers clean-up consisted of subjecting the sieved fractions to two hydrocyclone steps, six settling/decantation steps and two magnetic separation steps. The best results were achieved when the hydrocyclone separators led to Mg recovery of 85% (±4) for the coarsest size fraction size. Both hydrocyclone underflow streams underwent settling/decantation separations. The settling tests lasted 30 min and led to Mg recoveries of 82.5% (±1.8) of Mg in the ultimate concentrate. SEM characterizations revealed that it was possible to reduce substantially the amount of chrysotile fibers to render the coarse-sized fraction in the mining waste usable while significantly lowering the health risk of the fibers. A two-step magnetic separation was applied to the final settling/decantation underflow to remove magnetic minerals such as magnetite from the lizardite/antigorite concentrate. The final quasi-non-magnetic chrysotile-depleted lizardite/antigorite concentrate allowed sample recovery of 62.5% (±0.9) wt. of Mg. These preliminary results are intended as a first compulsory step in support of viable restoration and sustainable development scenarios for the Thetford Mines mining sites as second-breath sources for valuable magnesium.


Sign in / Sign up

Export Citation Format

Share Document