scholarly journals The role of climate change education on individual lifetime carbon emissions

2018 ◽  
Author(s):  
Eugene C. Cordero ◽  
Diana Centeno ◽  
Anne Marie Todd

AbstractStrategies to mitigate climate change often center on clean technologies such as electric vehicles and solar panels, while the mitigation potential of a quality educational experience is rarely discussed. In this paper, we investigate the long-term impact that an intensive one-year university course had on individual carbon emissions by surveying students at least five years after having taken the course. A majority of course graduates reported pro-environmental decisions (i.e., type of car to buy, food choices) that can be attributed to experiences gained in the course. Furthermore, our carbon footprint analysis demonstrates that for the average course graduate, these decisions reduced their individual carbon emissions by 2.86 tons of CO2 per year. Focus group interviews identify that course graduates have developed a strong personal connection to climate change solutions, and this is realized in their daily behaviors and through their professional careers. The paper discusses in more detail the specific components of the course that are believed to be most impactful, and it shares preliminary outcomes from similar curriculum designs that are being used with K-12 students. Our analysis also demonstrates that if similar education programs were applied at scale, the potential reductions in carbon emissions would be of similar magnitude to other large-scale mitigation strategies such as rooftop solar or electric vehicles.

2012 ◽  
Vol 2012 ◽  
pp. 1-11 ◽  
Author(s):  
Oscar Daniel Salomón ◽  
María Gabriela Quintana ◽  
Andrea Verónica Mastrángelo ◽  
María Soledad Fernández

Vector-borne diseases closely associated with the environment, such as leishmaniases, have been a usual argument about the deleterious impact of climate change on public health. From the biological point of view interaction of different variables has different and even conflicting effects on the survival of vectors and the probability transmission of pathogens. The results on ecoepidemiology of leishmaniasis in Argentina related to climate variables at different scales of space and time are presented. These studies showed that the changes in transmission due to change or increase in frequency and intensity of climatic instability were expressed through changes in the probability of vector-human reservoir effective contacts. These changes of contact in turn are modulated by both direct effects on the biology and ecology of the organisms involved, as by perceptions and changes in the behavior of the human communities at risk. Therefore, from the perspective of public health and state policy, and taking into account the current nonlinear increased velocity of climate change, we concluded that discussing the uncertainties of large-scale models will have lower impact than to develop-validate mitigation strategies to be operative at local level, and compatibles with sustainable development, conservation biodiversity, and respect for cultural diversity.


2019 ◽  
Vol 11 (5) ◽  
pp. 1250 ◽  
Author(s):  
Mehdi Azadi ◽  
Mansour Edraki ◽  
Faezeh Farhang ◽  
Jiwhan Ahn

Carbon capture, utilisation and storage (CCUS) via mineral carbonation is an effective method for long-term storage of carbon dioxide and combating climate change. Implemented at a large-scale, it provides a viable solution to harvesting and storing the modern crisis of GHGs emissions. To date, technological and economic barriers have inhibited broad-scale utilisation of mineral carbonation at industrial scales. This paper outlines the mineral carbonation process; discusses drivers and barriers of mineral carbonation deployment in Australian mining; and, finally, proposes a unique approach to commercially viable CCUS within the Australian mining industry by integrating mine waste management with mine site rehabilitation, and leveraging relationships with local coal-fired power station. This paper discusses using alkaline mine and coal-fired power station waste (fly ash, red mud, and ultramafic mine tailings, i.e., nickel, diamond, PGE (platinum group elements), and legacy asbestos mine tailings) as the feedstock for CCUS to produce environmentally benign materials, which can be used in mine reclamation. Geographical proximity of mining operations, mining waste storage facilities and coal-fired power stations in Australia are identified; and possible synergies between them are discussed. This paper demonstrates that large-scale alkaline waste production and mine site reclamation can become integrated to mechanise CCUS. Furthermore, financial liabilities associated with such waste management and site reclamation could overcome many of the current economic setbacks of retrofitting CCUS in the mining industry. An improved approach to commercially viable climate change mitigation strategies available to the mining industry is reviewed in this paper.


2020 ◽  
Vol 29 (2) ◽  
pp. 175-195 ◽  
Author(s):  
Marco Grasso ◽  
Katia Vladimirova

Two-thirds of global industrial greenhouse gas emissions over the past two centuries can be traced to the activities of a handful of companies ('carbon majors'). Based on their direct contribution to climate change in terms of carbon emissions and on a number of morally relevant facts, this article proposes a normative framework to establish the responsibilities that carbon majors have in relation to climate change. Then, the analysis articulates these responsibilities in the form of two duties: a duty of decarbonisation and a duty of reparation. The duty of decarbonisation entails a large-scale transformation that carbon majors ought to undergo in order to reduce and eventually eliminate carbon emissions from their entire business model. The duty of reparation implies rectification through disgorgement of funds for the wrongful actions of carbon majors, which resulted in negative climate impacts, starting from the most socially vulnerable groups affected by climate change. Finally, the article indicates possible practical implications of these duties.


2021 ◽  
Vol 7 (2) ◽  
pp. 127-135
Author(s):  
Hyop-Seung Rhee ◽  
Hyuck-Soon Im ◽  
Frank Andrew Manongi ◽  
Young-In Shin ◽  
Ho-Won Song ◽  
...  

To respond to the threat of global warming, countries around the world are promoting the spread of renewable energy and reduction of carbon emissions. In accordance with the United Nation’s Sustainable Development Goal to combat climate change and its impacts, global automakers are pushing for a full transition to electric vehicles within the next 10 years. Electric vehicles can be a useful means for reducing carbon emissions, but in order to reduce carbon generated in the stage of producing electricity for charging, a power generation system using eco-friendly renewable energy is required. In this study, we propose a smart electric mobility operating system integrated with off-grid solar power plants established in Tanzania, Africa. By applying smart monitoring and communication functions based on Arduino-based computing devices, information such as remaining battery capacity, battery status, location, speed, altitude, and road conditions of an electric vehicle or electric motorcycle is monitored. In addition, we present a scenario that communicates with the surrounding independent solar power plant infrastructure to predict the drivable distance and optimize the charging schedule and route to the destination. The feasibility of the proposed system was verified through test runs of electric motorcycles. In considering local environmental characteristics in Tanzania for the operation of the electric mobility system, factors such as eco-friendliness, economic feasibility, ease of operation, and compatibility should be weighed. The smart electric mobility operating system proposed in this study can be an important basis for implementing the SDGs' climate change response.


2015 ◽  
Vol 154 (5) ◽  
pp. 795-811 ◽  
Author(s):  
H. FRAGA ◽  
J. A. SANTOS ◽  
J. MOUTINHO-PEREIRA ◽  
C. CARLOS ◽  
J. SILVESTRE ◽  
...  

SUMMARYPhenological models are considered key tools for the short-term planning of viticultural activities and long-term impact assessment of climate change. In the present study, statistical phenological models were developed for budburst (BUD), flowering (FLO) and veraison (VER) of 16 grapevine varieties (autochthonous and international) from the Portuguese wine-making regions of Douro, Lisbon and Vinhos Verdes. For model calibration, monthly averages of daily minimum (Tmin), maximum (Tmax) and mean (Tmean) temperatures were selected as potential regressors by a stepwise methodology. Significant predictors included Tmin in January–February–March for BUD, Tmax in March–April for FLO, and Tmin, Tmax and Tmean in March–July for VER. Developed models showed a high degree of accuracy after validation, representing 0·71 of total variance for BUD, 0·83 for FLO and 0·78 for VER. Model errors were in most cases < 5 days, outperforming classic growing degree-day models, including models based on optimized temperature thresholds for each variety. Applied to the future scenarios RCP4·5/8·5, projections indicate earlier phenophase onset and shorter interphases for all varieties. These changes may bring significant challenges to the Portuguese wine-making sector, highlighting the need for suitable adaptation/mitigation strategies, to ensure its future sustainability.


Energies ◽  
2020 ◽  
Vol 13 (2) ◽  
pp. 298 ◽  
Author(s):  
Marisca Zweistra ◽  
Stan Janssen ◽  
Frank Geerts

The energy system is changing due to a steady increase in electric vehicles on the demand side and local production (mostly through solar panels) on the production side. Both developments can put the energy grid under stress during certain timeframes, while there might be enough capacity on the grid most of the day. Smart charging of electric vehicles might be a solution to time dependent congestion. In this study, a smart charging strategy was developed and tested in large scale with 1000 public chargers, operated in the real word. We developed and tested protocols to temporarily limit the charger capacity based on the transformer data and the number of running sessions. Over 150,000 sessions were handled, of which almost half were influenced by the smart charging strategy applied. We found that we were able to keep within the grid limits by using these controls, without hindering the driver experience. Further improvements to the smart charging strategy can be made as soon as car manufacturers share information about the car battery such as the state of charge.


2016 ◽  
Vol 2016 ◽  
pp. 1-9 ◽  
Author(s):  
Li Li ◽  
Yalin Lei ◽  
Chunyan He ◽  
Sanmang Wu ◽  
Jiabin Chen

Climate change has threatened our economic, environmental, and social sustainability seriously. The world has taken active measures in dealing with climate change to mitigate carbon emissions. Predicting the carbon emissions peak has become a global focus, as well as a leading target for China’s low carbon development. China has promised its carbon emissions will have peaked by around 2030, with the intention of peaking earlier. Scholars generally have studied the influencing factors of carbon emissions. However, research on carbon emissions peaks is not extensive. Therefore, by setting a low scenario, a middle scenario, and a high scenario, this paper predicts China’s carbon emissions peak from 2015 to 2035 based on the data from 1998 to 2014 using the Stochastic Impacts by Regression on Population, Affluence, and Technology (STIRPAT) model. The results show that in the low, middle, and high scenarios China will reach its carbon emissions peak in 2024, 2027, and 2030, respectively. Thus, this paper puts forward the large-scale application of technology innovation to improve energy efficiency and optimize energy structure and supply and demand. China should use industrial policy and human capital investment to stimulate the rapid development of low carbon industries and modern agriculture and service industries to help China to reach its carbon emissions peak by around 2030 or earlier.


2019 ◽  
Vol 39 (3-4) ◽  
pp. 23-32
Author(s):  
George Martin

This analysis of the emergent automated vehicle technology focuses on the friction at its interface with society, clouding its future. The sequential focus of development → deployment is reconfigured as reciprocal: society ↔ technology. A best path forward is presented that incorporates environmental and social sustainability factors as they relate to climate change and public health. The path’s signpost is automated electric vehicles deployed in public and private fleets. This course has promise to recover automobility from the damaging, unsustainable legacy of personal internal combustion vehicles—highlighted by their toxic and carbon emissions, and road casualties.


2020 ◽  
Vol 13 (1) ◽  
pp. 33
Author(s):  
Agha Hasan ◽  
Ali Bahadori-Jahromi ◽  
Anastasia Mylona ◽  
Marco Ferri ◽  
Hooman Tahayori

The large-scale shifts in weather patterns and an unprecedented change in climate have given rise to the interest in how climate change will affect the carbon emissions of supermarkets. This study investigates the implications of future climatic conditions on the operation of supermarkets in the UK. The investigation was conducted by performing a series of energy modelling simulations on a LIDL supermarket model in London, based on the UK Climate Projections (UKCP09) future weather years provided by the Chartered Institution of Building Services Engineers (CIBSE). Computational fluid dynamic (CFD) simulations were used to perform the experiment, and the baseline model was validated against the actual data. This investigation ascertains and quantifies the annual energy consumption, carbon emissions, and cooling and heating demand of the supermarket under different climatic projections, which further validate the scientific theory of annual temperature rise as a result of long-term climatic variation. The maximum percentage increase for the annual energy consumption for current and future weather data sets observed was 7.01 and 6.45 for the 2050s medium emissions scenario, (90th) percentile and high emissions scenario, (90th) percentile, respectively, and 11.05, 14.07, and 17.68 for the 2080s low emissions scenario, (90th) percentile, medium (90th) percentile and high emissions scenario (90th) percentile, respectively. A similar inclining trend in the case of annual CO2 emissions was observed where the peak increase percentage was 6.80 and 6.24 for the 2050s medium emissions scenario, (90th) percentile and high (90th) percentile, respectively and 10.84, 13.84, and 17.45 for the 2080s low emissions scenario, (90th) percentile, medium emissions scenario (90th) percentile and high emissions scenario (90th) percentile, respectively. The study also analyses the future heating and cooling demands of the three warmest months and three coldest months of the year, respectively, to determine future variance in their relative values.


2019 ◽  
Vol 11 (10) ◽  
pp. 2928 ◽  
Author(s):  
Weijun Wang ◽  
Dan Zhao ◽  
Zengqiang Mi ◽  
Liguo Fan

In response to air pollution problems caused by carbon emissions, electric vehicles are widely promoted in China. Since thermal power generation is the main form of power generation, the large-scale development of electric vehicles is equivalent to replacing oil with coal, which will accordingly result in carbon emissions increasing if the scale of electric vehicles exceeds a certain limit. A relationship model between regional energy mix structure and electric vehicles holdings under the constraint of carbon emission reduction is established to perform a quantitative analysis of the limitation mechanism. In order to measure the scale of the future electric vehicle market under the constraint of carbon emissions reduction, a method called Extreme Learning Machine optimized by Improved Particle Swarm Optimization (IPSO-ELM) with higher precision than Extreme Learning Machine (ELM) is proposed to predict the power structure and the trend of electric vehicle development in the Beijing-Tianjin-Hebei region from 2019–2030. The calculation results show that the maximum number of electric vehicles must not exceed 19,340,000 and 26,867,171 based on emissions reduction aims and also the predicted energy mix structure in the Beijing-Tianjin-Hebei region in 2020 and 2030. At this time, the ratio of electric vehicles to traditional car ownership is 75.6% and 78.3%. The proportion of clean energy generation should reach 0.314 and 0.323 to match a complete replacement of traditional fuel vehicles for electric vehicles. A substantial increase in clean energy generation is needed so that the large-scale promotion of electric vehicles can still achieve the goal of carbon reduction. Therefore, this article will be helpful for policy-making on electric vehicle development scale and energy mix structure in the Beijing-Tianjin-Hebei region.


Sign in / Sign up

Export Citation Format

Share Document