scholarly journals Tensile Behavior and Diffusion of Moisture through Flax Fibers by Desorption Method

2019 ◽  
Vol 11 (13) ◽  
pp. 3558 ◽  
Author(s):  
Swarda S. Radkar ◽  
Ali Amiri ◽  
Chad A. Ulven

There has been a substantial increase in the usage of natural fibers and biodegradable polymers in composite materials due to the recent focus on sustainability of materials. Flax fibers have exhibited higher mechanical properties compared to most other natural fibers available. However, one of the major challenges faced in the use of flax fiber is its hydrophilicity. In this study, the tensile behavior of flax fiber tows removed from commercially available woven fabrics were investigated at different moisture levels. The breaking tenacity of fiber tows was shown to increase with an increase in moisture content of up to 25%. After this point, additional absorption of moisture resulted in a decrease of fiber tenacity. In addition, the diffusion process through flax fiber mat with different areal densities was investigated and the diffusion coefficients were determined using the desorption curves. Diffusion rates were not found to significantly change with varying areal densities of 200 to 400 gsm, but were significantly different when exposed to temperatures of 55 °C versus 80 °C.

2016 ◽  
Author(s):  
M. Song ◽  
P. F. Liu ◽  
S. J. Hanna ◽  
R. A. Zaveri ◽  
K. Potter ◽  
...  

Abstract. To improve predictions of air quality, visibility, and climate change, knowledge of the viscosities and diffusion rates within organic particulate matter consisting of secondary organic material (SOM) is required.Most qualitative and quantitative measurements of viscosity and diffusion rates within organic particulate matter have focused on SOM particles generated from biogenic VOCs such as α-pinene and isoprene. In this study, we quantify the relative humidity (RH)-dependent viscosities at 295 ± 1 K of SOM produced by photo-oxidation of toluene, an anthropogenic VOC. The viscosities of toluene-derived SOM were 2 × 10−1 to ∼6 × 106 Pa·s from 30 to 90 % RH, and greater than ~2 × 108 Pa·s (similar to or greater than the viscosity of tar pitch) for RH ≤ 17 %. These viscosities correspond to Stokes-Einstein-equivalent diffusion coefficients for large organic molecules of ~2 × 10−15 cm2·s−1 for 30 % RH, and lower than ~3 × 10−17 cm2·s−1 for RH ≤ 17 %. Based on these estimated diffusion coefficients, the mixing time of large organic molecules within 200 nm toluene-derived SOM particles is 0.1–5 hr for 30 % RH, and higher than ~100 hr for RH ≤ 17 %. These results were used, as a first-order approximation, to estimate if organic particulate matter will be in well-mixed over the world's top 15 most populous megacities. If the organic particulate matter in the megacities is similar to the toluene-derived SOM in this study, in Kolkata, Istanbul, Dhaka, Tokyo, Shanghai, and Mumbai, mixing times in organic particulate matter during extended periods of the year will be very short, and well-mixed particles can be assumed. On the other hand, the mixing times of large organic molecules in organic particulate matter in Delhi, Beijing, Mexico City, Cairo, and Karachi may be long and the particles may not be well-mixed in the afternoon (3:00–5:00 local time) during certain times of the year.


2019 ◽  
Vol 19 (3) ◽  
pp. 1491-1503 ◽  
Author(s):  
Dagny A. Ullmann ◽  
Mallory L. Hinks ◽  
Adrian M. Maclean ◽  
Christopher L. Butenhoff ◽  
James W. Grayson ◽  
...  

Abstract. Viscosities and diffusion rates of organics within secondary organic aerosol (SOA) remain uncertain. Using the bead-mobility technique, we measured viscosities as a function of water activity (aw) of SOA generated by the ozonolysis of limonene followed by browning by exposure to NH3 (referred to as brown limonene SOA or brown LSOA). These measurements together with viscosity measurements reported in the literature show that the viscosity of brown LSOA increases by 3–5 orders of magnitude as the aw decreases from 0.9 to approximately 0.05. In addition, we measured diffusion coefficients of intrinsic fluorescent organic molecules within brown LSOA matrices using rectangular area fluorescence recovery after photobleaching. Based on the diffusion measurements, as the aw decreases from 0.9 to 0.33, the average diffusion coefficient of the intrinsic fluorescent organic molecules decreases from 5.5×10-9 to 7.1×10-13 cm2 s−1 and the mixing times of intrinsic fluorescent organic molecules within 200 nm brown LSOA particles increases from 0.002 to 14 s. These results suggest that the mixing times of large organics in the brown LSOA studied here are short (<1 h) for aw and temperatures often found in the planetary boundary layer (PBL). Since the diffusion coefficients and mixing times reported here correspond to SOA generated using a high mass loading (∼1000 µg m−3), biogenic SOA particles found in the atmosphere with mass loadings ≤10 µg m−3 are likely to have higher viscosities and longer mixing times (possibly 3 orders of magnitude longer). These new measurements of viscosity and diffusion were used to test the accuracy of the Stokes–Einstein relation for predicting diffusion rates of organics within brown LSOA matrices. The results show that the Stokes–Einstein equation gives accurate predictions of diffusion coefficients of large organics within brown LSOA matrices when the viscosity of the matrix is as high as 102 to 104 Pa s. These results have important implications for predicting diffusion and mixing within SOA particles in the atmosphere.


2016 ◽  
Vol 16 (14) ◽  
pp. 8817-8830 ◽  
Author(s):  
Mijung Song ◽  
Pengfei F. Liu ◽  
Sarah J. Hanna ◽  
Rahul A. Zaveri ◽  
Katie Potter ◽  
...  

Abstract. To improve predictions of air quality, visibility, and climate change, knowledge of the viscosities and diffusion rates within organic particulate matter consisting of secondary organic material (SOM) is required. Most qualitative and quantitative measurements of viscosity and diffusion rates within organic particulate matter have focused on SOM particles generated from biogenic volatile organic compounds (VOCs) such as α-pinene and isoprene. In this study, we quantify the relative humidity (RH)-dependent viscosities at 295 ± 1 K of SOM produced by photo-oxidation of toluene, an anthropogenic VOC. The viscosities of toluene-derived SOM were 2  ×  10−1 to  ∼  6  ×  106 Pa s from 30 to 90 % RH, and greater than  ∼  2  ×  108 Pa s (similar to or greater than the viscosity of tar pitch) for RH  ≤  17 %. These viscosities correspond to Stokes–Einstein-equivalent diffusion coefficients for large organic molecules of  ∼  2  ×  10−15 cm2 s−1 for 30 % RH, and lower than  ∼  3  ×  10−17 cm2 s−1 for RH  ≤  17 %. Based on these estimated diffusion coefficients, the mixing time of large organic molecules within 200 nm toluene-derived SOM particles is 0.1–5 h for 30 % RH, and higher than  ∼  100 h for RH  ≤  17 %. As a starting point for understanding the mixing times of large organic molecules in organic particulate matter over cities, we applied the mixing times determined for toluene-derived SOM particles to the world's top 15 most populous megacities. If the organic particulate matter in these megacities is similar to the toluene-derived SOM in this study, in Istanbul, Tokyo, Shanghai, and São Paulo, mixing times in organic particulate matter during certain periods of the year may be very short, and the particles may be well-mixed. On the other hand, the mixing times of large organic molecules in organic particulate matter in Beijing, Mexico City, Cairo, and Karachi may be long and the particles may not be well-mixed in the afternoon (15:00–17:00 LT) during certain times of the year.


2018 ◽  
Author(s):  
Dagny A. Ullmann ◽  
Mallory L. Hinks ◽  
Adrian Maclean ◽  
Christopher Butenhoff ◽  
James Grayson ◽  
...  

Abstract. Viscosities and diffusion rates of organics within secondary organic aerosol (SOA) remain uncertain. Using the bead-mobility technique, we measured the viscosities as a function of water activity (aw) of SOA generated by the ozonolysis of limonene followed by browning by exposure to NH3 (referred to as brown limonene SOA or brown LSOA). These measurements together with viscosity measurements reported in the literature show that the viscosity of brown LSOA increases by 3–5 orders of magnitude as the aw decreases from 0.9 to approximately 0.05. In addition, we measured diffusion coefficients of intrinsic fluorescent organic molecules within brown LSOA matrices using rectangular area fluorescence recovery after photobleaching. Based on the diffusion measurements, as the aw decreases from 0.9 to 0.33, the average diffusion coefficient of the intrinsic fluorescent organic molecules decreases from 5.5∙10-9 cm2 s-1 to 7.1∙10-13 cm2 s-1 and the mixing times of intrinsic fluorescent organic molecules within 200 nm brown LSOA particles increases from 0.002 s to 14 s. These results suggest that the mixing times of large organics in the brown LSOA studied here are short (


Fibers ◽  
2020 ◽  
Vol 8 (2) ◽  
pp. 15 ◽  
Author(s):  
Henri Lansiaux ◽  
Damien Soulat ◽  
François Boussu ◽  
Ahmad Rashed Labanieh

Multiscale characterization of the textile preform made of natural fibers is an indispensable way to understand and assess the mechanical properties and behavior of composite. In this study, a multiscale experimental characterization is performed on three-dimensional (3D) warp interlock woven fabrics made of flax fiber on the fiber (micro), roving (meso), and fabric (macro) scales. The mechanical tensile properties of the flax fiber were determined by using the impregnated fiber bundle test. The effect of the twist was considered in the back-calculation of the fiber stiffness to reveal the calculation limits of the rule of mixture. Tensile tests on dry rovings were carried out while considering different twist levels to determine the optimal amount of twist required to weave the flax roving into a 3D warp interlock. Finally, at fabric-scale, six different 3D warp interlock architectures were woven to understand the role of the architecture of binding rovings on the mechanical properties of the dry 3D fabric. The results reveal the importance of considering the properties of the fiber and roving at these scales to determine the more adequate raw material for weaving. Further, the characterization of the 3D woven structures shows the preponderant role of the binding roving on their structural and mechanical properties.


2017 ◽  
Vol 24 (5) ◽  
pp. 651-660 ◽  
Author(s):  
Zajna Sherief ◽  
Guijun Xian ◽  
Sabu Thomas ◽  
Anu Ajith

AbstractIn the present work, functionalized copper nanoparticles (FCuNPs) were grafted onto flax fibers, and the effects on the tensile properties, bonding strength to an epoxy resin, as well as the properties of the flax fiber-epoxy model composites were investigated. The copper nanoparticles were synthesized at ambient temperature by a chemical reduction method. The reduction of solution of copper chloride salt in the polyvinylalcohol medium was done by using sodium borohydrate. Ultraviolet-visible spectroscopy, transmission electron microscopy, and X-ray diffraction studies were used to characterize the size of the synthesized particles. The synthesized copper nanoparticles were applied to saturate the unidirectional flax natural fibers, whose surfaces were previously tailored with the cationic agent triethylammonium chloride. A remarkable improvement in the tensile strength by 75% and modulus by 50% for FCuNPs grafted flax fibers was found. Thermo-mechanical properties of the flax fiber reinforced epoxy composites were studied using DMTA. Finally, the anti-microbial analysis for composites was also conducted against Aspergillus niger spores, and enhanced anti-microbial performance was observed for treated fiber-based composites.


2021 ◽  
pp. 152808372110013
Author(s):  
Vivek R Jayan ◽  
Lekhani Tripathi ◽  
Promoda Kumar Behera ◽  
Michal Petru ◽  
BK Behera

The internal geometry of composite material is one of the most important factors that influence its performance and service life. A new approach is proposed for the prediction of internal geometry and tensile behavior of the 3 D (three dimensional) woven fabrics by creating the unit cell using mathematical coding. In many technical applications, textile materials are subjected to rates of loading or straining that may be much greater in magnitude than the regular household applications of these materials. The main aim of this study is to provide a generalized method for all the structures. By mathematical coding, unit cells of 3 D woven orthogonal, warp interlock and angle interlock structures have been created. The study then focuses on developing code to analyze the geometrical parameters of the fabric like fabric thickness, areal density, and fiber volume fraction. Then, the tensile behavior of the coded 3 D structures is studied in Ansys platform and the results are compared with experimental values for authentication of geometrical parameters as well as for tensile behavior. The results show that the mathematical coding approach is a more efficient modeling technique with an acceptable error percentage.


2004 ◽  
Vol 03 (01) ◽  
pp. 69-90 ◽  
Author(s):  
BEHZAD HAGHIGHI ◽  
ALIREZA HASSANI DJAVANMARDI ◽  
MOHAMAD MEHDI PAPARI ◽  
MOHSEN NAJAFI

Viscosity and diffusion coefficients for five equimolar binary gas mixtures of SF 6 with O 2, CO 2, CF 4, N 2 and CH 4 gases are determined from the extended principle of corresponding states of viscosity by the inversion technique. The Lennard–Jones 12-6 (LJ 12-6) potential energy function is used as the initial model potential required by the technique. The obtained interaction potential energies from the inversion procedure reproduce viscosity within 1% and diffusion coefficients within 5%.


2008 ◽  
Vol 40 (02) ◽  
pp. 529-547
Author(s):  
Francisco J. Piera ◽  
Ravi R. Mazumdar ◽  
Fabrice M. Guillemin

In this paper we consider reflected diffusions with positive and negative jumps, constrained to lie in the nonnegative orthant of ℝ n . We allow for the drift and diffusion coefficients, as well as for the directions of reflection, to be random fields over time and space. We provide a boundary behavior characterization, generalizing known results in the nonrandom coefficients and constant directions of the reflection case. In particular, the regulator processes are related to semimartingale local times at the boundaries, and they are shown not to charge the times the process expends at the intersection of boundary faces. Using the boundary results, we extend the conditions for product-form distributions in the stationary regime to the case when the drift and diffusion coefficients, as well as the directions of reflection, are random fields over space.


Sign in / Sign up

Export Citation Format

Share Document