scholarly journals Soil Water Content and Temperature Dynamics under Grassland Degradation: A Multi-Depth Continuous Measurement from the Agricultural Pastoral Ecotone in Northwest China

2019 ◽  
Vol 11 (15) ◽  
pp. 4188 ◽  
Author(s):  
Wenjing Yang ◽  
Yibo Wang ◽  
Chansheng He ◽  
Xingyan Tan ◽  
Zhibo Han

The agricultural pastoral ecotone (APE) in Northwest China is an ecological transition zone in the arid area with a very fragile ecosystem. In recent years, the ecosystem has deteriorated sharply, and increasing desertification has made the regional ecosystem more vulnerable and sensitive. In this study, we analyzed (using classical statistical methods) spatial and temporal variations in soil water content (SWC) from 14 September 2016 to 22 April 2019 for high and low vegetation in two grassland sites in Yanchi County, Ningxia. The results showed that the largest average seasonal SWC occurred in autumn. The SWC of the first three layers (0 ÷ 15 cm) of the soil profile responded strongly to precipitation, whereas the SWC in deeper soil (30 ÷ 50 cm) could only be recharged markedly after continuous precipitation. Additionally, the growing process of plants proved to be a cause of variability in soil moisture profiles. Vegetation degradation sped up the course of desertification and decreased soil organic carbon content. These changes left the soil increasingly desiccated and enhanced soil variability. Meanwhile, vegetation degradation also prompted changes in soil temperature and shortened the soil’s frozen time in winter. With the acceleration of global warming, if the process of vegetation degeneration continues and soil temperatures keep rising, the ecosystem is likely to undergo irreversible degradation.

2018 ◽  
Vol 66 (4) ◽  
pp. 421-428 ◽  
Author(s):  
Dušan Igaz ◽  
Vladimír Šimanský ◽  
Ján Horák ◽  
Elena Kondrlová ◽  
Jana Domanová ◽  
...  

Abstract During the last decade, biochar has captured the attention of agriculturalists worldwide due to its positive effect on the environment. To verify the biochar effects on organic carbon content, soil sorption, and soil physical properties under the mild climate of Central Europe, we established a field experiment. This was carried out on a silty loam Haplic Luvisol at the Malanta experimental site of the Slovak Agricultural University in Nitra with five treatments: Control (biochar 0 t ha−1, nitrogen 0 kg ha−1); B10 (biochar 10 t ha−1, nitrogen 0 kg ha−1); B20 (biochar 20 t ha−1, nitrogen 0 kg ha−1); B10+N (biochar 10 t ha−1, nitrogen 160 kg ha−1) and B20+N (biochar 20 t ha−1, nitrogen 160 kg ha−1). Applied biochar increased total and available soil water content in all fertilized treatments. Based on the results from the spring soil sampling (porosity and water retention curves), we found a statistically significant increase in the soil water content for all fertilized treatments. Furthermore, biochar (with or without N fertilization) significantly decreased hydrolytic acidity and increased total organic carbon. After biochar amendment, the soil sorption complex became fully saturated mainly by the basic cations. Statistically significant linear relationships were observed between the porosity and (A) sum of base cations, (B) cation exchange capacity, (C) base saturation.


2020 ◽  
Vol 113 (4) ◽  
pp. 1927-1932
Author(s):  
Cai-hua Shi ◽  
Jing-rong Hu ◽  
You-jun Zhang

Abstract The production of Chinese chives is reduced throughout China due to a root-feeding dipteran pest Bradysia odoriphaga Yang et Zhang (Diptera: Sciaridae), therefore deciphering the conditions influencing its growth and development are important in developing ecological control strategies. A study was conducted from 2014 to 2017 to determine the relationship between the abundance of B. odoriphaga and temperature (atmospheric and soil), soil water content, and atmospheric humidity in a Chinese chive field in Beijing City, China. Numbers of adults peaked in March and October to November and were lowest in July to August and December to next February; numbers of larvae were highest in December to next February and lowest in July to August. From 2014 to 2017, the numbers of adults and larvae were significantly correlated with monthly mean atmospheric temperatures and soil temperatures, but were not significantly correlated with monthly mean atmospheric relative humidity and soil water content. However, for both adults and larvae, numbers were significantly greater with high soil water contents compared with drought treatment. The results of this study suggest that the very low soil water contents, high atmospheric temperatures, and high soil temperatures were critical for regulating field populations of B. odoriphaga.


1993 ◽  
Vol 23 (4) ◽  
pp. 617-624 ◽  
Author(s):  
Xiwei Yin ◽  
Neil W. Foster ◽  
Paul A. Arp

Temporal variations of ion concentrations in soil solution were analyzed in relation to soil percolate volume, soil water content, soil temperature, solution chemistry, and season. The study site was an uneven-aged, mature northern tolerant hardwoods dominated by sugar maple (Acersaccharum Marsh.) within the Turkey Lakes Watershed, Ontario. Six ions were investigated: nitrate (NO3−), sulfate (SO42−), calcium (Ca2+), magnesium (Mg2+), potassium (K+), and ammonium (NH4+). Nitrate concentrations in the soil solution depended on season during the nonfoliage period and responded directly to forest floor percolation, soil water content, and season during the foliage period. Variations of SO42−, Ca2+, and Mg2+ concentrations were mostly attributable to NO3− concentration, and to season to a lesser extent. Concentrations of K+ and NH4+ correlated only weakly to any of the "independent" variables included in the analysis, reflecting a high affinity between these ions and the soil colloids.


2020 ◽  
Vol 8 ◽  
Author(s):  
Guohua Wang ◽  
Qianqian Gou ◽  
Yulian Hao ◽  
Huimin Zhao ◽  
Xiafang Zhang

An understanding of soil water content dynamics is important for vegetation restoration in an arid desert-oasis ecotone under different landscapes. In this study, the dynamics of soil water content under three typical landscapes (i.e., desert, sand-binding shrubland, and farmland shelter woodland) were investigated in the Hexi Corridor, northwest China, during the growing season from 2002 to 2013. The results showed that the soil water content in the deep layers decreased from 20–30% to a stable low level of 3–5% in the desert and shrubland. For the farmland shelter woodland, the soil water content at the deep layers also decreased, but the decrease rate was much smaller than the desert and shrubland. The decrease of soil water content in the deep soil layers among desert–shrubland–woodland was strongly associated with the increase of groundwater depths. The greatest increase of groundwater depths mainly occurred during 2008–2011, while the largest decrease of soil water content took place during the years 2009–2011, with a time-lag in response to increase in groundwater depths. This study provides new insight into the long-term dynamics of soil water content in a typical desert oasis ecotone under different landscape components from the influence of overexploiting groundwater that cannot be inferred from a short-term study. The findings demonstrate that the sharp increase of groundwater depths could be the main reason behind the reduction of soil water content in the clay interlayers, and sustainable development of groundwater resources exploitation is very important for the management of desert-oasis ecotone from a long-term perspective.


Water ◽  
2018 ◽  
Vol 10 (12) ◽  
pp. 1747 ◽  
Author(s):  
Javier Lozano-Parra ◽  
Manuel Pulido ◽  
Carlos Lozano-Fondón ◽  
Susanne Schnabel

Interactions between land and atmosphere directly influence hydrometeorological processes and, therefore, the local climate. However, because of heterogeneity of vegetation covers these feedbacks can change over small areas, becoming more complex. This study aims to define how the interactions between soil moisture and vegetation covers influence soil temperatures in very water-limited environments. In order to do that, soil water content and soil temperature were continuously monitored with a frequency of 30 min over two and half hydrological years, using capacitance and temperature sensors that were located in open grasslands and below tree canopies. The study was carried out on three study areas located in drylands of Mediterranean climate. Results highlighted the importance of soil moisture and vegetation cover in modifying soil temperatures. During daytime and with low soil moisture conditions, daily maximum soil temperatures were, on average, 7.1 °C lower below tree canopies than in the air, whereas they were 4.2 °C higher in grasslands than in the air. As soil wetness decreased, soil temperature increased, although this effect was significantly weaker below tree canopies than in grasslands. Both high soil water content and the effect of shading were reflected in a decrease of maximum soil temperatures and of their daily amplitudes. Statistical analysis emphasized the influence of soil temperature on soil water reduction, regardless of vegetation cover. If soil moisture deficits become more frequent due to climate change, variations in soil temperature could increase, affecting hydrometeorological processes and local climate.


Agronomy ◽  
2019 ◽  
Vol 9 (7) ◽  
pp. 360 ◽  
Author(s):  
Hanmi Zhou ◽  
Xiaoli Niu ◽  
Hui Yan ◽  
Na Zhao ◽  
Fucang Zhang ◽  
...  

Exploring the interactive effect of water and fertilizer on yield, soil water and nitrate dynamics of young apple tree is of great importance to improve the management of irrigation and fertilization in the apple-growing region of semiarid northwest China. A two-year pot experiment was conducted in a mobile rainproof shelter of the water-saving irrigation experimental station in Northwest A&F University, and the investigation evaluated the response of soil water and fertilizer migration, crop water productivity (CWP), irrigation water use efficiency (IWUE), partial factor productivity (PFP) of young apple tree to different water and fertilizer regimes (four levels of soil water: 75%–85%, 65%–75%, 55%–65% and 45%–55% of field capacity, designated W1, W2, W3 and W4, respectively; three levels of N-P2O5-K2O fertilizer, 30-30-10, 20-20-10 and 10-10-10 g plant−1, designated F1, F2 and F3, respectively). Results showed that F1W1, F2W1 and F3W1 had the highest average soil water content at 0~90 cm compared with the other treatments. When fertilizer level was fixed, the average soil water content was gradually increased with increasing irrigation amount. For W1, W2, W3 and W4, high levels of water content were mainly distributed at 50~80 cm, 40~70 cm, 30~50 cm and 10~30 cm, respectively. There was no significant difference in soil water content at all fertilizer treatments. However, F1 and F2 significantly increased soil nitrate-N content by 146.3%~246.4% and 75.3%~151.5% compared with F3. The highest yield appeared at F1W1 treatment, but there was little difference between F1W1 and F2W2 treatment. F2W2 treatment decreased yield by 7.5%, but increased IWUE by 11.2% compared with F1W1 treatment. Meanwhile, the highest CWP appeared at F2W2 treatment in the two years. Thus, F2W2 treatment (soil moisture was controlled in 65–75% of field capacity, N-P2O5-K2O were controlled at 20-20-10 g·tree−1) reached the best water and fertilizer coupling mode and it was the optimum combinations of water and fertilizer saving.


Atmosphere ◽  
2021 ◽  
Vol 12 (7) ◽  
pp. 824
Author(s):  
Yunxuan Zhang ◽  
Sien Li ◽  
Mousong Wu ◽  
Danni Yang ◽  
Chunyu Wang

Soybean is one of the major crops that is widely cultivated in Northwest China due to its high nutritional and economic value. However, drought has recently become an important factor restricting the growth of soybeans in the arid region of Northwest China and the selection of drought-resistant soybean is of importance for cooperating with drought and improving yield. In this study, three-year soybean field experiments were conducted to test the effects of different water treatments on the soil moisture status and the yield of two varieties of soybeans (Longhuang1 (LH1), Longahuang3 (LH3)). Based on the field data, the soil water content, biomass, LAI, and yield were calibrated and evaluated using the soil-crop system model WHCNS (soil Water Heat Carbon Nitrogen Simulator). The results showed that the nRMSE, NSE, IA, and R2 of the soil water content from two types of soybean, i.e., LH1 (LH3) were 10.98% (9.79%), 0.86 (0.90), 0.96 (0.97), 0.87 (0.90), respectively. The nRMSE, NSE, IA and R2 of the yield of LH1 (LH3) were 19.12% (4.41%), 0.87 (0.99), 0.97 (1.00), 0.98 (0.99), respectively. Scenario simulations of yield and other indicators in two soybean varieties under different irrigation schedules in different hydrological years showed that the maximum yield and II of LH3 are lower than those of LH1, but the higher yield and II of LH1 comes from a larger irrigation amount. Appropriately reducing the number of irrigations in the branching period will not reduce crop yield and may oppositely lead to a small increase in yield and income; reducing the number of irrigations at the end of grouting has no significant impact on yield and income.


2016 ◽  
Author(s):  
Wei Qu ◽  
Heye R. Bogena ◽  
Johan A. Huisman ◽  
Marius Schmidt ◽  
Ralf Kunkel ◽  
...  

Abstract. The Rollesbroich headwater catchment located in Western Germany is a densely instrumented hydrological observatory and part of the TERENO (Terrestrial Environmental Observatories) initiative. The measurements acquired in this observatory present a comprehensive dataset that contains key hydrological fluxes in addition to important hydrological states and properties. Meteorological data (i.e. precipitation, air temperature, air humidity, radiation components, and wind speed) are continuously recorded and actual evapotranspiration is measured using the eddy covariance technique. Runoff is measured at the catchment outlet with a gauging station. In addition, spatio-temporal variations in soil water content and temperature are measured at high resolution with a wireless sensor network (SoilNet). Soil physical properties were determined using standard laboratory procedures from samples taken at a large number of locations in the catchment. This comprehensive data set can be used to validate remote sensing retrievals and hydrological models; to improve the understanding of spatial temporal dynamics of soil water content; to optimize data assimilation and inverse techniques for hydrological models; and to develop upscaling and downscaling procedures of soil water content information. The complete data set is freely available online (http://www.tereno.net).


Sign in / Sign up

Export Citation Format

Share Document