scholarly journals Green Concrete: By-Products Utilization and Advanced Approaches

2019 ◽  
Vol 11 (19) ◽  
pp. 5145 ◽  
Author(s):  
Al-Mansour ◽  
Chow ◽  
Feo ◽  
Penna ◽  
Lau

The popularity of concrete has been accompanied with dreadful consumptions that have led to huge carbon footprint in our environment. The exhaustion of natural resources is not yet the problem, but also the energy that is needed for the fabrication of the natural materials, in which this process releases significant amount of carbon dioxide (CO2) emissions into the air. Ordinary Portland Cement (OPC) and natural aggregates, which are the key constituents of concrete, are suggested to be recycled or substituted in order to address the sustainability concern. Here, by-products have been targeted to reduce the carbon footprint, including, but not limited to, fly ash, rice husk ash, silica fume, recycled coarse aggregates, ground granular blast-furnace slag, waste glass, and plastic. Moreover, advanced approaches with an emphasis on sustainability are highlighted, which include the enhancement of the hydration process in cement (calcium-silicate hydrate) and the development of new materials that can be used in concrete (e.g. carbon nanotube). This review paper provides a comprehensive discussion upon the utilization of the reviewed materials, as well as the challenges and the knowledge gaps in producing green and sustainable concrete.

2019 ◽  
Vol 5 (1) ◽  
pp. 74 ◽  
Author(s):  
Ashfaque Ahmed Jhatial ◽  
Wan Inn Goh ◽  
Kim Hung Mo ◽  
Samiullah Sohu ◽  
Imtiaz Ali Bhatti

Concrete which is widely used material in the construction industry, has a carbon footprint. Approximately 10% of global Carbon Dioxide (CO2) gas is emitted during the production of cement which is vital ingredient of concrete. The increase in production of cement affects global warming and climate change. Therefore, many have attempts have been made to develop green and sustainable concrete by utilizing different waste materials. With the utilization of waste materials as cement replacement, the CO2 gas emissions can be reduced as well as resolve the environmental issues that the inhabitants face during the disposal of such waste materials. This paper reviews the potential and innovative utilization of Rice Husk Ash (RHA) and Eggshells as partial cement replacement to develop green concrete. RHA which is rich in silica and eggshells contain identical amount of calcium oxide as cement, when finely grinded and used together as partial cement replacement, can trigger a pozzolanic reaction, in which silica reacts with calcium oxide resulting in the formation of calcium silicates which are responsible for achieving higher strengths.


2021 ◽  
Author(s):  
Nicoleta Mariana Ene ◽  
Carmen Răcănel ◽  
Adrian Burlacu

Nowadays, in the context of increasing traffic, extending road network, and environmental protection, an important target is to develop sustainable roads through the use of by-products derived from various manufacturing processes that can lead to the reduction of environmental degradation. Blast furnace slag is the resulting material during the casting processes of the iron. This is a non-metallic process that is obtained by melting the chemical compounds from the sterile, ash coxe, and the founders. As a result of global research, it has been found that an ecological asphalt mixture (with slags as aggregate) can be used as a pavement layer. However, there are inconveniences related to poor moisture susceptibility. In this context, this paper presents the study of moisture susceptibility of asphalt mixtures with blast furnace slags starting from a basic recipe of AC 31.5 type with natural aggregate and replacing the natural aggregate with slag in different percentages. The paper presents the tests carried out on 15 asphalt mixture recipes with partial and total replacement of natural aggregates with slag artificial aggregates and compared to a classic recipe where 100% natural aggregates were used. The used tests were chosen to characterize the water-related behavior: water absorption and indirect tensile strength test. The results indicate that asphalt mixture with slag aggregates can be a valuable resource in designing asphalt mixtures and satisfactory performance has been achieved.


Buildings ◽  
2018 ◽  
Vol 8 (8) ◽  
pp. 111 ◽  
Author(s):  
Faiz Shaikh

This paper presents mechanical and durability properties of green star concretes. Four series of concretes are considered. The first series is control concrete containing 100% ordinary Portland cement, 100% natural aggregates and fresh water. The other three series of concretes are green star concretes according to Green Building Council Australia (GBCA), which contain blast furnace slag, recycled coarse aggregates and concrete wash water. In all above concretes compressive strength, indirect tensile strength, elastic modulus, water absorption, sorptivity and chloride permeability are measured at 7 and 28 days. Results show that mechanical properties of green star concretes are lower than the control concrete at both ages with significant improvement at 28 days. Similar results are also observed in water absorption, sorptivity and chloride permeability where all measured durability properties are lower in green star concretes compared to control concrete except the higher water absorption in some green star concretes.


2021 ◽  
Vol 13 (5) ◽  
pp. 2756
Author(s):  
Federica Vitale ◽  
Maurizio Nicolella

Because the production of aggregates for mortar and concrete is no longer sustainable, many attempts have been made to replace natural aggregates (NA) with recycled aggregates (RA) sourced from factories, recycling centers, and human activities such as construction and demolition works (C&D). This article reviews papers concerning mortars with fine RA from C&D debris, and from the by-products of the manufacturing and recycling processes of building materials. A four-step methodology based on searching, screening, clustering, and summarizing was proposed. The clustering variables were the type of aggregate, mix design parameters, tested properties, patents, and availability on the market. The number and the type of the clustering variables of each paper were analysed and compared. The results showed that the mortars were mainly characterized through their physical and mechanical properties, whereas few durability and thermal analyses were carried out. Moreover, few fine RA were sourced from the production waste of construction materials. Finally, there were no patents or products available on the market. The outcomes presented in this paper underlined the research trends that are useful to improve the knowledge on the suitability of fine RA from building-related processes in mortars.


Author(s):  
Zaidatul Syahida Adnan ◽  
Nur Farhayu Ariffin ◽  
Sharifah Maszura Syed Mohsin ◽  
Nor Hasanah Abdul Shukor Lim

2021 ◽  
Vol 13 (2) ◽  
pp. 854
Author(s):  
Diana Movilla-Quesada ◽  
Aitor C. Raposeiras ◽  
Manuel Lagos-Varas ◽  
Osvaldo Muñoz-Cáceres ◽  
Valerio-Carlos Andrés-Valeri ◽  
...  

Chile is the first Latin American country to begin an “ecological overdraft”, as established by the Global Footprint Network (GFN). This implies that the country’s ecological footprint has exceeded the global average bio-capacity. The consumption of natural aggregates for construction in Chile has grown by around 6.6% in the last year, with around 120 million tons being extracted. Given the above, it is important to seek alternatives that help to minimize the problem of resource scarcity, as well as the recovery of industrial by-products and/or waste. The Chilean forestry sector has also grown in recent years, generating approximately 4000 metric tons of waste in 2018, which was deposited in landfills or disposed of on forest roads. The present research is focused on the reuse and possible recovery of ash from the incineration of cellulose as a filler in bituminous mixtures. We analyze the adhesiveness of the filler/bitumen system in dry and wet states, based on the Cantabro wear loss test. The results obtained show that the limit of the relation between the volumetric concentration and critical concentration (Cv/Cs) is 1 for the addition of ash and that concentrations lower than or equal to this value present controlled losses, with 1.00 being the optimal (Cv/Cs) ratio that allows better behavior against the effect of water.


2014 ◽  
Vol 608 ◽  
pp. 62-67
Author(s):  
Karin Kandananond

Although the manufacturing businesses have played an important role in generating the highest GDP for Thailand, they also emit more greenhouse gas (GHG) than other sectors. Due to the cap and trade scheme by European Union (EU), the carbon footprint is the GHG emitted by products, organization or persons and it has to be tracked and recorded. Since the ceramic production process also has a major contribution on the emission, its carbon footprint is a piece of product information which cannot be ignored. In this research, the carbon footprint for the whole life cycle of a local ceramic product was recorded and calculated. It is interesting to note that the resource extraction stage has contributed to the highest emission followed by the product use, manufacturing, disposal and distribution. The results from this research are useful for local ceramic manufacturers who want to export their products to the EU countries and it is also important for the customers who are concerned about the environment.


2013 ◽  
Vol 723 ◽  
pp. 609-616
Author(s):  
Wei Chien Wang ◽  
Chih Chien Liu ◽  
Chau Lee

The furnace slag are the by-products of the steel industry, the main ingredients are the oxide of calcium, alumina and magnesium, and some silica. Slag used as concrete aggregate could cause the problem of the volume expansion of concrete. The expansion problem may be produced by ASR or free calcium oxide and magnesium oxide in slag. This research stabilizing the non-ASR reactive slag using steam treatment analyzes the effectiveness of steam treating technique inhibiting the expansive problem for slag used in concrete. And this paper also discusses the effect of the steam treating time on the performance of inhibiting the expansive problem.


Sign in / Sign up

Export Citation Format

Share Document