scholarly journals Median to Strong Rainfall Intensity Favors Carbon Sink in a Temperate Grassland Ecosystem in China

2019 ◽  
Vol 11 (22) ◽  
pp. 6376 ◽  
Author(s):  
Guangcun Hao ◽  
Zhongmin Hu ◽  
Qun Guo ◽  
Kai Di ◽  
Shenggong Li

Over the past 50 years, rainfall events have made significant alterations to environments due to global warming. The grasslands in arid and semi-arid regions are extremely sensitive to variations in rainfall patterns, which are considered to significantly affect ecosystem functions. In this study, an experiment with varying rainfall sizes and frequencies (0 mm, 2 mm, 5 mm, 10 mm, 20 mm, and 40 mm) was conducted during growing seasons in typical grasslands, to study the effect of changes in rainfall regime on net ecosystem exchange (NEE). Our results indicated that NEE exhibited nonlinear responses to rainfall treatments, and reached its peak under 20 mm in middle growing season. Further, the component fluxes of both NEE (i.e., gross primary productivity (GPP)) and ecosystem respiration (ER) illustrated nonlinear responses to treatment gradient, with peak values at 20 mm and 5 mm, respectively. Based on five-year eddy flux measurements, further analyses demonstrated that GPP and ER increased with increasing soil moisture, and net ecosystem carbon uptake (-1*NEE) was significantly stimulated due to a more enhanced GPP than ER, when soil moisture was above 8%. Additionally, we found that the response of root biomass was different from that of carbon fluxes to changes in rainfall patterns. Overall, these findings highlight the importance of both changes in rainfall regimes in controlling ecosystem C exchange and investigation of the potential threshold for ecosystem function shifts, which are crucial to further understand C cycles in grasslands.

2015 ◽  
Vol 1 (2) ◽  
pp. 27-44 ◽  
Author(s):  
Krista L. Hanis ◽  
Brian D. Amiro ◽  
Mario Tenuta ◽  
Tim Papakyriakou ◽  
Kyle A. Swystun

Net ecosystem exchange of carbon was measured using eddy covariance for four growing seasons at a subarctic hummocky fen in northern Manitoba, Canada. Over a 115 day measurement period each year, cumulative net ecosystem exchange of carbon ranged from a gain of 49 g C m−2to a loss of 16 g C m−2with a mean loss of 6 g C m−2from the fen, with an uncertainty of about ±34 g C m−2. Ecosystem respiration decreased with higher water tables (r2= 0.3), especially in one summer when flooding occurred to 0.12 m above the peat surface. Additional methane emissions previously documented for the site of 4–5.7 g C m−2year−1added to the carbon loss. Carbon loss was measured from this same fen in the 1990s and it is likely that the carbon gain (peat accumulation) during past centuries has not continued in recent decades. Scaling to annual greenhouse gas emissions as a 100 year global warming potential showed that this fen is currently a source of 192–490 g CO2-equivalents m−2year−1based on both carbon dioxide and methane flux measurements, indicating that peat is decomposing.


Atmosphere ◽  
2021 ◽  
Vol 13 (1) ◽  
pp. 44
Author(s):  
Yue Li ◽  
Zhongmei Wan ◽  
Li Sun

Climate change is accelerating its impact on northern ecosystems. Northern peatlands store a considerable amount of C, but their response to climate change remains highly uncertain. In order to explore the feedback of a peatland in the Great Hing’an Mountains to future climate change, we simulated the response of the overall net ecosystem exchange (NEE), ecosystem respiration (ER), and gross primary production (GPP) during 2020–2100 under three representative concentration pathways (RCP2.6, RCP6.0, and RCP8.5). Under the RCP2.6 and RCP6.0 scenarios, the carbon sink will increase slightly until 2100. Under the RCP8.5 scenario, the carbon sink will follow a trend of gradual decrease after 2053. These results show that when meteorological factors, especially temperature, reach a certain degree, the carbon source/sink of the peatland ecosystem will be converted. In general, although the peatland will remain a carbon sink until the end of the 21st century, carbon sinks will decrease under the influence of climate change. Our results indicate that in the case of future climate warming, with the growing seasons experiencing overall dryer and warmer environments and changes in vegetation communities, peatland NEE, ER, and GPP will increase and lead to the increase in ecosystem carbon accumulation.


2011 ◽  
Vol 8 (11) ◽  
pp. 3203-3218 ◽  
Author(s):  
A. Lohila ◽  
K. Minkkinen ◽  
M. Aurela ◽  
J.-P. Tuovinen ◽  
T. Penttilä ◽  
...  

Abstract. Drainage for forestry purposes increases the depth of the oxic peat layer and leads to increased growth of shrubs and trees. Concurrently, the production and uptake of the greenhouse gases carbon dioxide (CO2), methane (CH4) and nitrous oxide (N2O) change: due to the accelerated decomposition of peat in the presence of oxygen, drained peatlands are generally considered to lose peat carbon (C). We measured CO2 exchange with the eddy covariance (EC) method above a drained nutrient-poor peatland forest in southern Finland for 16 months in 2004–2005. The site, classified as a dwarf-shrub pine bog, had been ditched about 35 years earlier. CH4 and N2O fluxes were measured at 2–5-week intervals with the chamber technique. Drainage had resulted in a relatively little change in the water table level, being on average 40 cm below the ground in 2005. The annual net ecosystem exchange was −870 ± 100 g CO2 m−2 yr−1 in the calendar year 2005, indicating net CO2 uptake from the atmosphere. The site was a small sink of CH4 (−0.12 g CH4 m−2 yr−1) and a small source of N2O (0.10 g N2O m−2 yr−1). Photosynthesis was detected throughout the year when the air temperature exceeded −3 °C. As the annual accumulation of C in the above and below ground tree biomass (175 ± 35 g C m−2) was significantly lower than the accumulation observed by the flux measurement (240 ± 30 g C m−2), about 65 g C m−2 yr−1 was likely to have accumulated as organic matter into the peat soil. This is a higher average accumulation rate than previously reported for natural northern peatlands, and the first time C accumulation has been shown by EC measurements to occur in a forestry-drained peatland. Our results suggest that forestry-drainage may significantly increase the CO2 uptake rate of nutrient-poor peatland ecosystems.


2018 ◽  
Vol 40 (2) ◽  
pp. 159 ◽  
Author(s):  
Luomeng Chao ◽  
Zhiqiang Wan ◽  
Yulong Yan ◽  
Rui Gu ◽  
Yali Chen ◽  
...  

Aspects of carbon exchange were investigated in typical steppe east of Xilinhot city in Inner Mongolia. Four treatments with four replicates were imposed in a randomised block design: Control (C), warming (T), increased precipitation (P) and combined warming and increased precipitation (TP). Increased precipitation significantly increased both ecosystem respiration (ER) and soil respiration (SR) rates. Warming significantly reduced the ER rate but not the SR rate. The combination of increased precipitation and warming produced an intermediate response. The sensitivity of ER and SR to soil temperature and air temperature was assessed by calculating Q10 values: the increase in respiration for a 10°C increase in temperature. Q10 was lowest under T and TP, and highest under P. Both ER and SR all had significantly positive correlation with soil moisture. Increased precipitation increased net ecosystem exchange and gross ecosystem productivity, whereas warming reduced them. The combination of warming and increased precipitation had an intermediate effect. Both net ecosystem exchange and gross ecosystem productivity were positively related to soil moisture and negatively related to soil and air temperature. These findings suggest that predicted climate change in this region, involving both increased precipitation and warmer temperatures, will increase the net ecosystem exchange in the Stipa steppe meaning that the ecosystem will fix more carbon.


2010 ◽  
Vol 7 (1) ◽  
pp. 429-462 ◽  
Author(s):  
C. Albergel ◽  
J.-C. Calvet ◽  
A.-L. Gibelin ◽  
S. Lafont ◽  
J.-L. Roujean ◽  
...  

Abstract. In this work, a simple representation of the soil moisture effect on the ecosystem respiration is implemented into the A-gs version of the Interactions between Soil, Biosphere, and Atmosphere (ISBA) model. It results in an improvement of the modelled CO2 flux over a grassland, in southwestern France. The former temperature-only dependent respiration formulation used in ISBA-A-gs is not able to model the limitation of the respiration under dry conditions. In addition to soil moisture and soil temperature, the only parameter required in this formulation is the ecosystem respiration parameter Re25. It can be estimated by the mean of eddy covariance measurements of turbulent nighttime CO2 flux (i.e. ecosystem respiration). The resulting correlation between observed and modelled net ecosystem exchange is r2=0.63 with a bias of −2.18 μmol m−2 s−1. It is shown that when CO2 observations are not available, it is possible to use a more complex model, able to represent the heterotrophic respiration and all the components of the autotrophic respiration, to estimate Re25 with similar results. The modelled ecosystem respiration estimates are provided by the Carbon Cycle (CC) version of ISBA (ISBA-CC). ISBA-CC is a version of ISBA able to simulate all the respiration components whereas ISBA-A-gs uses a single equation for ecosystem respiration. ISBA-A-gs is easier to handle and more convenient than ISBA-CC for practical use in atmospheric or hydrological models. Surface water and energy flux observations as well as gross primary production (GPP) estimates are compared with model outputs. The dependence of GPP to air temperature is investigated. The observed GPP is less sensitive to temperature than the modelled GPP. Finally, the simulations of the ISBA-A-gs model are analysed over a seven year period (2001–2007). Modelled soil moisture and leaf area index (LAI) are confronted with the observed root-zone soil moisture content (m3 m−3), and with LAI estimates derived from surface reflectance measurements.


2021 ◽  
Author(s):  
Anders Lindroth ◽  
Norbert Pirk ◽  
Ingibjörg S. Jónsdóttir ◽  
Christian Stiegler ◽  
Leif Klemedtsson ◽  
...  

Abstract. We measured CO2 and CH4 fluxes using chambers and eddy covariance (only CO2) from a moist moss tundra in Svalbard. The average net ecosystem exchange (NEE) during the summer (June–August) was −0.40 g C m−2 day−1 or −37 g C m−2 for the whole summer. Including spring and autumn periods the NEE was reduced to −6.8 g C m−2 and the annual NEE became positive, 24.7 gC m−2 due to the losses during the winter. The CH4 flux during the summer period showed a large spatial and temporal variability. The mean value of all 214 samples was 0.000511 ± 0.000315 µmol m−2s−1 which corresponds to a growing season estimate of 0.04 to 0.16 g CH4 m−2. We find that this moss tundra emits about 94–100 g CO2-equivalents m−2 yr−1 of which CH4 is responsible for 3.5–9.3 % using GWP100 of 27.9 respectively GWP20. Air temperature, soil moisture and greenness index contributed significantly to explain the variation in ecosystem respiration (Reco) while active layer depth, soil moisture and greenness index were the variables that best explained CH4 emissions. Estimate of temperature sensitivity of Reco and gross primary productivity showed that a modest increase in air temperature of 1 degree did not significantly change the NEE during the growing season but that the annual NEE would be even more positive adding another 8.5 g C m−2 to the atmosphere. We tentatively suggest that the warming of the Arctic that has already taken place is partly responsible for the fact that the moist moss tundra now is a source of CO2 to the atmosphere.


2020 ◽  
Author(s):  
Aurelio Guevara-Escobar ◽  
Enrique González-Sosa ◽  
Mónica Cervantes-Jiménez ◽  
Humberto Suzán-Azpiri ◽  
Mónica Elisa Queijeiro-Bolaños ◽  
...  

Abstract. Vegetation fixes C in its biomass through photosynthesis or might release it into the atmosphere through respiration. Measurements of these fluxes would help us understand ecosystem functioning. The eddy covariance technique (EC) is widely used to measure the net ecosystem exchange of C (NEE) which is the balance between gross primary production (GPP) and ecosystem respiration (Reco). Orbital satellites such as MODIS can also provide estimates of GPP. In this study, we measured NEE with the EC in a scrub at Bernal in Mexico, and then partitioned into gross primary production (GPP-EC) and Reco using the recent R package Reddyproc. Measurements of GPP-EC were related to the estimates from the MODIS satellite provided in product MOD17A2H, which contains data of the gross primary productivity (GPP-MODIS). The Bernal site was a carbon sink despite it was an overgrazed site, the average NEE during fifteen months of 2017 and 2018 was −0.78 g C m−2 d−1 and the flux was negative in all measured months. The GPP-MODIS underestimated the ground data when representing the relation with a Theil-Sen regression: GPP-EC = 1.866 + 1.861 GPP-MODIS; an ordinary less squares regression had similar coefficients and the R2 was 0.6. Although cacti (CAM), legume shrubs (C3) and herbs (C3) had a similar vegetation index, the nighttime flux was characterized by positive NEE suggesting that the photosynthetic dark-cycle flux of cacti was lower than Reco. The discrepancy among the GPP flux estimates stresses the need to understand the limitations of EC and remote sensors, while incorporating complementary monitoring and modelling schemes of nighttime Reco, particularly in the presence of species with different photosynthetic cycles.


2014 ◽  
Vol 11 (2) ◽  
pp. 2189-2226 ◽  
Author(s):  
J. Hommeltenberg ◽  
H. P. Schmid ◽  
M. Droesler ◽  
P. Werle

Abstract. This study compares the CO2 exchange of a natural bog forest, and of a bog drained for forestry in the pre-alpine region of southern Germany. The sites are separated by only ten kilometers, they share the same formation history and are exposed to the same climate and weather conditions. In contrast, they differ in land use history: at the Schechenfilz site a natural bog-pine forest (Pinus mugo rotundata) grows on an undisturbed, about 5 m thick peat layer; at Mooseurach a planted spruce forest (Picea abies) grows on drained and degraded peat (3.4 m). The net ecosystem exchange of CO2 (NEE) at both sites has been investigated for two years (July 2010 to June 2012), using the eddy covariance technique. Our results indicate that the drained, forested bog at Mooseurach is a much stronger carbon dioxide sink (−130 ± 31 and −300 ± 66 g C m−2 a−1 in the first and second year respectively) than the natural bog forest at Schechenfilz (−53 ± 28 and −73±38 g C m−2 a−1). The strong net CO2 uptake can be explained by the high gross primary productivity of the spruces that over-compensates the two times stronger ecosystem respiration at the drained site. The larger productivity of the spruces can be clearly attributed to the larger LAI of the spruce site. However, even though current flux measurements indicate strong CO2 uptake of the drained spruce forest, the site is a strong net CO2 source, if the whole life-cycle, since forest planting is considered. We determined the difference between carbon fixation by the spruces and the carbon loss from the peat due to drainage since forest planting. The estimate resulted in a strong carbon release of +156 t C ha−1 within the last 44 yr, means the spruces would need to grow for another 100 yr, at the current rate, to compensate the peat loss of the former years. In contrast, the natural bog-pine ecosystem has likely been a small but consistent carbon sink for decades, which our results suggest is very robust regarding short-term changes of environmental factors.


2016 ◽  
Author(s):  
Efrén López-Blanco ◽  
Magnus Lund ◽  
Mathew Williams ◽  
Mikkel P. Tamstorf ◽  
Andreas Westergaard-Nielsen ◽  
...  

Abstract. An improvement in our process-based understanding of carbon (C) exchange in the Arctic, and its climate sensitivity, is critically needed for understanding the response of tundra ecosystems to a changing climate. In this context, we analyzed the net ecosystem exchange (NEE) of CO2 in West Greenland tundra (64° N) across eight snow-free periods in eight consecutive years, and characterized the key processes of net ecosystem exchange, and its two main modulating components: gross primary production (GPP) and ecosystem respiration (Reco). Overall, the ecosystem acted as a consistent sink of CO2, accumulating −30 g C m−2 on average (range −17 to −41 g C m−2) during the years 2008–2015, except 2011 that was associated with a major pest outbreak. The results do not reveal a marked meteorological effect on the net CO2 uptake despite the high inter-annual variability in the timing of snowmelt, start and duration of the growing season. The ranges in annual GPP (−182 to −316 g C m−2) and Reco (144 to 279 g C m−2) were > 5 fold larger and they were also more variable (Coefficients of variation are 3.6 and 4.1 % respectively) than for NEE (0.7 %). GPP and Reco were sensitive to insolation and temperatures; and there was a tendency towards larger GPP and Reco during warmer and wetter years. The relative lack of sensitivity of NEE to climate was a result of the correlated meteorological response of GPP and Reco. During the 2011 anomalous year, the studied ecosystem released 41 g C m−2 as biological disturbance reduced GPP more strongly than Reco. With continued warming temperatures and longer growing seasons, tundra systems will increase rates of C cycling although shifts in sink strength will likely be triggered by factors such as biological disturbances, events that will challenge the forecast of upcoming C states.


2017 ◽  
Vol 14 (19) ◽  
pp. 4467-4483 ◽  
Author(s):  
Efrén López-Blanco ◽  
Magnus Lund ◽  
Mathew Williams ◽  
Mikkel P. Tamstorf ◽  
Andreas Westergaard-Nielsen ◽  
...  

Abstract. An improvement in our process-based understanding of carbon (C) exchange in the Arctic and its climate sensitivity is critically needed for understanding the response of tundra ecosystems to a changing climate. In this context, we analysed the net ecosystem exchange (NEE) of CO2 in West Greenland tundra (64° N) across eight snow-free periods in 8 consecutive years, and characterized the key processes of net ecosystem exchange and its two main modulating components: gross primary production (GPP) and ecosystem respiration (Reco). Overall, the ecosystem acted as a consistent sink of CO2, accumulating −30 g C m−2 on average (range of −17 to −41 g C m−2) during the years 2008–2015, except 2011 (source of 41 g C m−2), which was associated with a major pest outbreak. The results do not reveal a marked meteorological effect on the net CO2 uptake despite the high interannual variability in the timing of snowmelt and the start and duration of the growing season. The ranges in annual GPP (−182 to −316 g C m−2) and Reco (144 to 279 g C m−2) were  > 5 fold larger than the range in NEE. Gross fluxes were also more variable (coefficients of variation are 3.6 and 4.1 % respectively) than for NEE (0.7 %). GPP and Reco were sensitive to insolation and temperature, and there was a tendency towards larger GPP and Reco during warmer and wetter years. The relative lack of sensitivity of NEE to meteorology was a result of the correlated response of GPP and Reco. During the snow-free season of the anomalous year of 2011, a biological disturbance related to a larvae outbreak reduced GPP more strongly than Reco. With continued warming temperatures and longer growing seasons, tundra systems will increase rates of C cycling. However, shifts in sink strength will likely be triggered by factors such as biological disturbances, events that will challenge our forecasting of C states.


Sign in / Sign up

Export Citation Format

Share Document