scholarly journals The Coordinated Relationship between Investment Potential and Economic Development and Its Driving Mechanism: A Case Study of the African Region

2020 ◽  
Vol 12 (1) ◽  
pp. 442 ◽  
Author(s):  
Guoen Wei ◽  
Pingjun Sun ◽  
Zhenke Zhang ◽  
Xiao Ouyang

In order to analyze the coordination relationship between investment potential and economic development and its driving mechanisms, this study integrated the entropy weight method, coupling coordination degree model, exploratory spatial data analysis, geographic detector, and geographically weighted regression model. The developed approach was applied using data from 51 African countries from 2008 to 2016. The results showed that: (1) While the level of economic development in the African continent has increased steadily, the overall investment potential needs to be improved. The mean economic development index rose from 0.116 to 0.151, but the economic gap among countries was still highly evident. (2) Uncoordinated development and barely coordinated development level were the dominant types of relationship between investment potential and economic development in African countries. The spatial distribution showed significant agglomeration characteristics; the sub-hot spot and sub-cold point regions maintained strong dependence with their hot spot and cold point counterparts. The hot spot areas gradually formed an agglomeration in Southern Africa and highly fragmented distribution in other areas. The cold spot areas formed a spatial distribution pattern of “one core and one belt” with some countries in Western Africa forming the core, while some Central and East African countries constituting the belt. (3) The coordination relationship between investment potential and economic development was influenced mainly by factors including economic base, residents’ living standard, industrial construction level, information support level, and business friendliness. Using geographically weighted regression coefficient distribution of indicators, the driving mechanisms of spatial distribution could be divided into five types: economic base driven, industry-driven, information application-driven, business convenience-driven, and consumer market-driven.

Geosciences ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 223
Author(s):  
Maciej Adamiak ◽  
Iwona Jażdżewska ◽  
Marta Nalej

Small cities are an important part of the settlement system, a link between rural areas and large cities. Although they perform important functions, research focuses on large cities and metropolises while marginalizing small cities, the study of which is of great importance to progress in social sciences, geography, and urban planning. The main goal of this paper was to verify the impact of selected socio-economic factors on the share of built-up areas in 665 small Polish cities in 2019. Data from the Database of Topographic Objects (BDOT), Sentinel-2 satellite imagery from 2015 and 2019, and Local Data Bank by Statistics Poland form 2019 were used in the research. A machine learning segmentation procedure was used to obtain the data on the occurrence of built-up areas. Hot Spot (Getis-Ord Gi*) analysis and geographically weighted regression (GWR) was applied to explain spatially varying impact of factors related to population, spatial and economic development, and living standards on the share of built-up areas in the area of small cities. Significant association was found between the population density and the share of built-up areas in the area of the cities studied. The influence of the other socio-economic factors examined, related to the spatial and economic development of the cities and the quality of life of the inhabitants, showed great regional variation. The results also indicated that the share of built-up areas in the area of the cities under study is a result of the conditions under which they were established and developed throughout their existence, and not only of the socio-economic factors affecting them at present.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Seblewongel Tigabu ◽  
Alemneh Mekuriaw Liyew ◽  
Bisrat Misganaw Geremew

Abstract Background In developing countries, 20,000 under 18 children give birth every day. In Ethiopia, teenage pregnancy is high with Afar and Somalia regions having the largest share. Even though teenage pregnancy has bad maternal and child health consequences, to date there is limited evidence on its spatial distribution and driving factors. Therefore, this study is aimed to assess the spatial distribution and spatial determinates of teenage pregnancy in Ethiopia. Methods A secondary data analysis was conducted using 2016 EDHS data. A total weighted sample of 3381 teenagers was included. The spatial clustering of teenage pregnancy was priorly explored by using hotspot analysis and spatial scanning statistics to indicate geographical risk areas of teenage pregnancy. Besides spatial modeling was conducted by applying Ordinary least squares regression and geographically weighted regression to determine factors explaining the geographic variation of teenage pregnancy. Result Based on the findings of exploratory analysis the high-risk areas of teenage pregnancy were observed in the Somali, Afar, Oromia, and Hareri regions. Women with primary education, being in the household with a poorer wealth quintile using none of the contraceptive methods and using traditional contraceptive methods were significant spatial determinates of the spatial variation of teenage pregnancy in Ethiopia. Conclusion geographic areas where a high proportion of women didn’t use any type of contraceptive methods, use traditional contraceptive methods, and from households with poor wealth quintile had increased risk of teenage pregnancy. Whereas, those areas with a higher proportion of women with secondary education had a decreased risk of teenage pregnancy. The detailed maps of hotspots of teenage pregnancy and its predictors had supreme importance to policymakers for the design and implementation of adolescent targeted programs.


Author(s):  
Long Ma ◽  
Jilili Abuduwaili ◽  
Wen Liu

A geographically weighted regression and classical linear model were applied to quantitatively reveal the factors influencing the spatial distribution of potentially toxic elements of forty-eight surface soils from Bosten Lake basin in Central Asia. At the basin scale, the spatial distribution of the majority of potentially toxic elements, including: cobalt (Co), chromium (Cr), copper (Cu), nickel (Ni), lead (Pb), thallium (Tl), vanadium (V), and zinc (Zn), had been significantly influenced by the geochemical characteristics of the soil parent material. However, the arsenic (As), cadmium (Cd), antimony (Sb), and mercury (Hg) have been influenced by the total organic matter in soils. Compared with the results of the classical linear model, the geographically weighted regression can significantly increase the level of simulation at the basin spatial scale. The fitting coefficients of the predicted values and the actual measured values significantly increased from the classical linear model (Hg: r2 = 0.31; Sb: r2 = 0.64; Cd: r2 = 0.81; and As: r2 = 0.68) to the geographically weighted regression (Hg: r2 = 0.56; Sb: r2 = 0.74; Cd: r2 = 0.89; and As: r2 = 0.85). Based on the results of the geographically weighted regression, the average values of the total organic matter for As (28.7%), Cd (39.2%), Hg (46.5%), and Sb (26.6%) were higher than those for the other potentially toxic elements: Cr (0.1%), Co (4.0%), Ni (5.3%), V (0.7%), Cu (18.0%), Pb (7.8%), Tl (14.4%), and Zn (21.4%). There were no significant non-carcinogenic risks to human health, however, the results suggested that the spatial distribution of potentially toxic elements had significant differences.


2020 ◽  
Vol 36 ◽  
pp. 87-102
Author(s):  
Aniefiok Henry Ekong ◽  
Olaniyi Mathew Olayiwola

Studies have shown that fertility rate in Africa is still among the highest in the world. However, there are few spatial investigations into the variation of fertility rate and its determinant in Africa. This study aimed to examine the spatial distribution of fertility rate as well as highlight its significant determinants. Ordinary Least Squares (OLS) regression was carried out on dataset for 53 African countries on Total Fertility Rate (TFR) and eleven determinant factors to obtain a best model, which was then used for Geographically Weighted Regression (GWR). The study showed that TFR was significantly influenced by adolescent fertility rates, contraceptive prevalence rates and gross domestic product per capita. GWR model diagnostics of Akaike Information Criterion and adjusted R-squared showed that GWR fitted TFR in Africa better than OLS model. Also, countries around Middle to Western Africa comprising Burundi, Democratic Republic of the Congo, Central African Republic, Chad, Nigeria, Niger, Benin, Burkina Faso and Mali, were regions with high TFRs that impacted Africa’s positive TFR spatial autocorrelation. More intense works could therefore be carried out in these countries to manage the identified significant factors affecting TFR to address the negative consequences of high TFR in Africa.


Sign in / Sign up

Export Citation Format

Share Document