scholarly journals Development of a Two-Stage Pyrolysis Process for the End-Of-Life Nickel Cobalt Manganese Lithium Battery Recycling from Electric Vehicles

2020 ◽  
Vol 12 (21) ◽  
pp. 9164 ◽  
Author(s):  
Lingyun Zhu ◽  
Ming Chen

With the continuous promotion of electric vehicles, the pressure to scrap vehicle batteries is increasing, especially in China, where nickel cobalt manganese lithium (NCM) batteries have gradually come to occupy a dominant position in the battery market. In this study, we propose a two-stage pyrolysis process for vehicle batteries, which aims to effectively deal with the volatilization of organic solvents, the decomposition of lithium salts in the electrolyte and the removal of the separator material and polyvinylidene fluoride (PVDF) during battery recycling. By solving these issues, recycling is more effective, safe. Through thermogravimetric analysis (TGA), the pyrolysis characteristics of the battery’s internal materials are discussed, and 150 °C and 450 °C were determined as the pyrolysis temperatures of the two-stage pyrolysis process. The results show that in the first stage of pyrolysis, organic solvents EC (C4H3O3), DEC (C5H10O3) and EMC (C4H8O3) can be separated from the electrolyte. In the second stage, the pyrolysis can lead to the separator’s thermal decomposition. The gas products are alkane C2-C6, and the tar products are organic hydrocarbons C15-C36. Meanwhile, the solid residue of the battery’s internal material seems to be very homogeneous. Finally, the potential recovery value and pollution control countermeasures of the products and residues from the pyrolysis process are analyzed. Consequently, this method can effectively handle NCM vehicle battery recycling, which provides the basis for the subsequent hydrometallurgical or pyrometallurgical process for element recovery of the battery material.

2020 ◽  
pp. 209-238
Author(s):  
William Infante ◽  
Jin Ma ◽  
Xiaoqing Han ◽  
Wei Li ◽  
Albert Y. Zomaya

2014 ◽  
Vol 878 ◽  
pp. 177-184
Author(s):  
He Long Hui ◽  
Jin Wei Jia ◽  
Yun Zhao Wei ◽  
Shu Cheng Liu ◽  
Xing Min Fu ◽  
...  

In order to make better utilization of coal tailings (low quality production after coal preparation) as the resources, the pyrolysis characteristics and product distributions during co-pyrolysis of coal tailings together with biomass at different ratio (20%, 40%, 60% and 80%) were determined in thermogravimetric analysis (TGA) and a fixed bed reactor in this paper. Coal tailings (TC) selected was provided by Hexi coal in Shanxi province, and pine branch wastes (PBW) were used as biomass samples. The result of TGA experiments indicates that the temperature corresponding to the maximum pyrolysis rate exhibited a significant difference between TC and PBW, and the value of the calculated TGA and DTG curves is similar to the experimental ones. In a fixed bed experiments within a temperature range of 25-900°C, gas product yields of co-pyrolysis of TC and PBW are higher than those of the sum of them individually, while tar and char yields were on the contrary. It shows some synergetic effect exists during co-pyrolysis process of TC and PBW blends, and the maximum synergy exhibits with a PBW blending ratio of 40%. CO yield increases up to 30% at 400°C and CH4yield increases up to 11.33% at 700°C compared with the calculated value. These findings can potentially help to understand and predict the behavior of coal tailings/biomass blends in practical systems.


Batteries ◽  
2019 ◽  
Vol 5 (4) ◽  
pp. 68 ◽  
Author(s):  
Velázquez-Martínez ◽  
Valio ◽  
Santasalo-Aarnio ◽  
Reuter ◽  
Serna-Guerrero

Lithium-ion batteries (LIBs) are currently one of the most important electrochemical energy storage devices, powering electronic mobile devices and electric vehicles alike. However, there is a remarkable difference between their rate of production and rate of recycling. At the end of their lifecycle, only a limited number of LIBs undergo any recycling treatment, with the majority go to landfills or being hoarded in households. Further losses of LIB components occur because the the state-of-the-art LIB recycling processes are limited to components with high economic value, e.g., Co, Cu, Fe, and Al. With the increasing popularity of concepts such as “circular economy” (CE), new LIB recycling systems have been proposed that target a wider spectrum of compounds, thus reducing the environmental impact associated with LIB production. This review work presents a discussion of the current practices and some of the most promising emerging technologies for recycling LIBs. While other authoritative reviews have focused on the description of recycling processes, the aim of the present was is to offer an analysis of recycling technologies from a CE perspective. Consequently, the discussion is based on the ability of each technology to recover every component in LIBs. The gathered data depicted a direct relationship between process complexity and the variety and usability of the recovered fractions. Indeed, only processes employing a combination of mechanical processing, and hydro- and pyrometallurgical steps seemed able to obtain materials suitable for LIB (re)manufacture. On the other hand, processes relying on pyrometallurgical steps are robust, but only capable of recovering metallic components.


2020 ◽  
pp. 0734242X2095349 ◽  
Author(s):  
Shuoyao Wang ◽  
Jeongsoo Yu

In recent years, China has started to develop electric vehicles (EVs) and has become the largest EV market in the world since 2015. Accordingly, the lithium-ion battery (LiB) industry has also been developing quickly in China. However, the Chinese government has decided to cancel the subsidy policy on EVs, which makes the EV market in China unpredictable in the future. Moreover, there will be a considerable number of end-of-life (EoL) EVs and waste LiBs generated in China. These wastes should be appropriately recycled to avoid resource waste or pollution problems. Nevertheless, the quantity and type of EoL EVs and waste LiBs has not been obtained. This research aims at unravelling the trend of EV sales and the volume and type of EoL EVs and waste LiBs in China. We found that it is fair to predict that EVs will increase as the Chinese government has planned even without the subsidy policy. Moreover, we estimated the number of EoL EVs and waste LiBs number based on their calendar lifespan and found that there will be 1.36 million EoL EVs and 11.36 million waste LiBs generated in China in 2030. Furthermore, most of these waste LiBs will be of the nickel cobalt manganese oxide type of ternary LiBs. However, due to the flow of second-hand vehicles from economically developed cities to less economically developed cities, only 400,000 EoL EVs and 3.4 million waste LiBs will be recycled through the formal recycling route. Such information is necessary when evaluating the environmental effect or profitability of the EoL EV and waste LiB recycling industry.


Sign in / Sign up

Export Citation Format

Share Document