scholarly journals Uptake Kinetics of \({\text{NH}_{4}^{+} }\), \({\text{NO}_{3}^{-} }\) and \({\text{H}_{2}\text{PO}_{4}^{-} }\) by Typha orientalis, Acorus calamus L., Lythrum salicaria L., Sagittaria trifolia L. and Alisma plantago-aquatica Linn

2021 ◽  
Vol 13 (1) ◽  
pp. 434
Author(s):  
Kunlun Wang ◽  
Qian Hu ◽  
Yumin Wei ◽  
Hui Yin ◽  
Changhong Sun ◽  
...  

The emergent plants may differ in their capacity to assimilate nutrients from eutrophic water bodies, so the utilization of suitable emergent plants is the key part for successful restoration of shallow eutrophic lakes and rivers. This research applied the depletion method to study the kinetics of uptake of nutrient (H2PO4−, NH4+, NO3−) in different nutrient stresses by the five emergent aquatic plants (Acorus calamus L., Typha orientalis, Lythrum salicaria L., Sagittaria trifolia L., Alisma plantago-aquatica Linn) in the riverine zones of Dashi River (39°30′–39°40′ N, 115°59′–116°5′ E), a shallow eutrophic river located in Fangshan District, Beijing. The results showed that at the three phosphorus levels, A. calamus and A. plantago-aquatica had the highest maximum uptake rate values for NH4+ under low to moderate phosphorus conditions, and high phosphorus, respectively. T. orientalis had the highest maximum uptake rate values for NO3− at all phosphorus concentrations, while the Michaelis-Menten constant values of L. salicaria and A. plantago-aquatica were smaller. At the three nitrogen levels, the maximum uptake rate values for H2PO4− were the greatest for A. plantago-aquatica at the low to moderate nitrogen levels and L. salicaria at high levels. Meanwhile, T. orientalis and L. salicaria had the smallest Michaelis-Menten constant values. In this study, nitrogen microbial transformations, such as nitrification, denitrification and their coupling were not measured and their role in measuring kinetics was not assessed. Thus, achieved results shall be considered as a synthesis of several processes mediated by plants, a theoretical guidance to the selection of plant species for phytoremediation of polluted water bodies with different nutrient stresses for quality improvement around the diverse rivers in Haihe River basin.

RSC Advances ◽  
2018 ◽  
Vol 8 (58) ◽  
pp. 33383-33390 ◽  
Author(s):  
Yangyang Wang ◽  
Ningqing Lv ◽  
Xuhui Mao ◽  
Zheng Yan ◽  
Jinsheng Wang ◽  
...  

Four kinds of wetland emergent plants (Iris sibirica L., Acorus calamus L., Typha orientalis Presl and Cyperus alternifolius L.) were investigated for their cadmium tolerance and accumulation characteristics under hydroponic conditions.


2012 ◽  
Vol 66 (6) ◽  
pp. 1282-1288 ◽  
Author(s):  
Qinghai Wang ◽  
Wei Zhang ◽  
Cui Li ◽  
Bo Xiao

A hydroponic system was used to evaluate atrazine (ATZ) removal and uptake by three emergent hydrophytes, Iris pseudacorus, Lythrum salicaria and Acorus calamus, determining their potential as phytoremediation agents for ATZ-contaminated water. After 20 days of exposure, the relative growth rate of plants in sterile conditions was less than in natural conditions. ATZ amount in a culture solution planted with emergent plants decreased significantly compared with an unplanted solution, and the removal rate of ATZ in natural conditions was greater than in sterile conditions (p < 0.05). The degradation contributions of I. pseudacorus, L. salicaria and A. calamus were 75.6, 65.5 and 61.8%, respectively. Those of the corresponding microbial population in the solution were 5.4, 11.4 and 17.4%, respectively. Emergent plants play a dominant role in reducing the ATZ level in the water body and could be used as phytoremediation agents.


2020 ◽  
pp. 53-61
Author(s):  
Ansharullah Ansharullah ◽  
Muhammad Natsir

The aims of this study were to characterize the kinetics of enzymatic hydrolysis of sago starch, obtained from Southeast Sulawesi Indonesia. The enzyme used for hydrolysis was bacterial ∝-amylase (Termamyl 120L from Bacillus licheniformis, E. C. 3.2.1.1).  The method to determine the initial velocity (Vo) of the hydrolysis was developed by differentiation a nonlinear equation (NLE).  The Vo of the hydrolysis was measured at various pH (6.0, 6.5,and 7.0), temperatures (40, 60, 75 and 95oC), enzyme concentrations (0.5, 1.0, 1.5 and 2.0 µg per mL) and in the presence of 70 ppm Ca++. The optimum conditions of this experiment were found to be at pH 6.5 – 7.0 and 75oC, and the Vo increased with increasing enzyme concentration. The Vo values at various substrate concentrations were also determined, which were then used to calculate the enzymes kinetics constant of the hydrolysis, including Michaelis-Menten constant (Km) and maximum velocity (Vmax) using a Hanes plot.  Km and Vmax values were found to be higher in the measurement at pH 7.0 and 75oC. The Km values  at four  different combinations of pH and temperatures (pH 6.5, 40oC; pH 6.5, 75oC; pH 7.0, 40oC; pH 7.0, 75oC) were found to be 0.86, 3.23, 0.77 and 3.83 mg/mL, respectively; and Vmax values were 17.5, 54.3, 20.3 and 57.1 µg/mL/min, respectively. The results obtained showed that hydrolysis rate of this starch was somewhat low.


1985 ◽  
Vol 63 (10) ◽  
pp. 1876-1879 ◽  
Author(s):  
Paul A. Keddy ◽  
Timothy H. Ellis

Where many different plant species occupy an environmental gradient, the responses of their offspring to that gradient could show one of two patterns. All species could have similar requirements for maximum recruitment, in which case all would show maximum germination and emergence in the same region of the gradient ("shared responses"). Alternatively, each species could have different requirements for recruitment and therefore would show maximum recruitment in different regions of the gradient ("distinct responses"). The objective of this study was to test between these two alternatives in plants occurring along a water level gradient. Seeds of 11 wetland species were allowed to germinate in sand along a gradient of water depth, ranging from 10 cm above to 5 cm below the substrate surface. Scirpus americanus, S. validus, Sagittaria latifolia, Typha angustifolia, and Lythrum salicaria showed no significant response to this gradient, while Spartina pectinata, Polygonum punctatum, Bidens cernua, Acorus calamus, Alisma plantago-aquatica, and Eupatorium perfoliatum did. However, the six species in the latter group did not exhibit shared preferences along the water depth gradient. These different recruitment patterns were consistent with adult distributions in the field. Most species showed some recruitment at all water levels examined, suggesting that they have broad tolerance limits for water level in the recruitment phase of their life history.


2020 ◽  
Vol 81 (9) ◽  
pp. 1852-1862
Author(s):  
Jun Li ◽  
Giovanni Loi ◽  
Lila Otero-Gonzalez ◽  
Gijs Du Laing ◽  
Ivet Ferrer ◽  
...  

Abstract The kinetics of Se uptake and toxicity to Lemna were studied over a period of 14 days of exposure to Se(IV) or Se(VI). The growth of Lemna stopped immediately after exposure to 5.0 mg/L of Se(IV) or Se(VI). The content of chlorophyll and phaeopigments of Lemna exposed to 5.0 mg/L of Se(IV) was two to three times less than in the control after 3 d exposure. Lemna took up Se rapidly within the first 3 d. The Se content in Lemna along with the exposure time fitted well the two-compartment and the hyperbolic model, which demonstrates that the mechanism of Se(IV) and Se(VI) uptake in Lemna is not only through passive diffusion, but also through other processes such as ion channel proteins or transporters. The kinetic bioconcentration factors (BCFs) were 231 and 42 for 0.5 mg/L Se(IV) and Se(VI) exposure, respectively. The uptake rate of Lemna reached 263 mg/kg/d and 28 mg/kg/d in the Se(IV) and Se(VI) treatments, respectively. This study showed that Se(IV) has a faster accumulation rate than Se(VI), but a higher toxicity, indicating Lemna could be a good candidate to remove Se(IV) from water, producing Se-enriched biomass which may eventually also be considered for use as Se-enriched feed supplement or fertilizer.


1983 ◽  
Vol 49 (1) ◽  
pp. 153-158 ◽  
Author(s):  
H. Martens

1. Absorption of magnesium from the temporarily-isolated, emptied and washed rumen of four 10–12-month-old heifers was measured at five different Mg concentrations (2·5, 5·0, 7·5, 12·5 and 20 mmol/l).2. Net absorption of Mg was observed at all concentrations. Saturation occurred at a concentration of 12·5 mmol Mg/l.3. Using an Eadie–Hofstee plot, the Michaelis–Menten constant (Km; 11·43 mmol/l) and maximal efflux (Vmax; 120·3 μmol/min) were estimated.4. The phenomenon of saturation supports the assumption that Mg transport across the rumen wall of heifers is an active process.


2018 ◽  
Vol 4 (2) ◽  
pp. 234
Author(s):  
S R Juliastuti ◽  
J Baeyens ◽  
C Creemers ◽  
J Degreve

Determination of rate parameter for kinetics of nitrification The nitrification process is the bottleneck step in the total nitrogen removal. The formation of nitrate is considered as the rate limiting step in the whole process and its kinetics determine the design of the nitrification reactor. Heavy metals (Zn2+ and Cu2+) and different organic compounds are used as micropollutants. These kinetics were experimentally measured by respirometry. In line with the aim of the paper, the experimental investigation are conducted to develop design equations to describe kinetic rate relationships under optimum conditions, study the parameter influence such as pH and inhibition by reaction intermediates and inhibition by external pollutants. Results demonstrate that the maximum value of the specific growth rate of autotrophic biomass() is 1.02 day at pH=7 and decreases at pH 7.5; inhibition occurs at substrate (NH4) concentrations in excess of 15 mg N/l; inhibition occurs at increasing concentrations of NO –N and Cu2+ has more pronounced inhibitory effect than Zn2+. The inhibitory effect of organic compounds are listed as the Chlorobenzene > Trichloroethylene> Phenol> Ethyl benzene; the experimental oxygen uptake rate (OUR)-test results the autotrophic kinetic parameter values, which can be used in design equations. Keywords: Respirometry,  Autotrophic Biomass,  Nitrification, Oxygen Uptake Rate Abstrak Proses nitrifikasi merupakan langkah penting pada penurunan kadar total nitrogen. Pembentukan nitrat dianggap sebagai tahap pembatas kecepatan reaksi pada keseluruhan proses dan kinetikanya menentukan perancangan dari bagian proses nitrifikasi. Logam berat (Zn2+ dan Cu2+) dan berbagai jenis komponen organik digunakan sebagai mikropolutan. Kinetika ini secara eksperimental diukur menggunakan respirometer. Tujuan penelitian adalah mengembangkan persamaan perancangan yang menggambarkan hubungan laju kinetika pada kondisi optimum, studi pengaruh parameter seperti pH, inhibisi karena reaksi intermediat, dan inhibisi oleh polutan dari luar. Hasil penelitian ditunjukkan sebagai berikut: harga laju pertumbuhan  biomasa autotrof maksimum spesifik  adalah 1,02 hari-1 pada pH=7 dan menurun pada pH 7,5; inhibisi terjadi pada konsentrasi substrat (NH4+) lebih besar dari 15 mg N/l; inhibisi terjadi pada peningkatan  konsentrasi NO -N ;Cu2+  lebih dikenal sebagai penyebab  inhibisi  daripada Zn2+. Efek inhibisi dari komponen organik di daftar mulai dari Chlorobenzene sampai Ethylbenzen. Tes OUR menghasilkan harga parameter kinetika yang dapat dipakai pad apersamaan perencanaan  lumpur aktif nitrifikasi. Kata Kunci: Respirometer, BiomasaAutotrof, Nitrifikasi, Laju Kenaikan Oksigen


1960 ◽  
Vol 43 (4) ◽  
pp. 853-866 ◽  
Author(s):  
Elliott Robbins

A technique for the measurement of the uptake rate of proflavin by the single cell in tissue culture has been developed, and the kinetics of the dye transport are discussed in terms of its physicochemical properties. Some applications of the technique to the study of permeability are given.


1996 ◽  
Vol 270 (2) ◽  
pp. L183-L190 ◽  
Author(s):  
G. Saumon ◽  
G. Martet ◽  
P. Loiseau

The glucose concentration in the epithelial lining fluid (ELF) results from a balance between cellular uptake and paracellular leakage. The present study examines whether the ELF glucose concentration can be predicted from the kinetics of glucose transport obtained in fluid-filled lungs. Isolated rat lungs were filled via the trachea with instillate containing 0-10 mM glucose; the perfusate glucose concentration was 10 mM. The rate of glucose removal from airspaces depended on luminal glucose concentration and was saturable [maximum uptake rate = 101 +/- 8.6 mumol.h-1.g dry lung wt-1; apparent Michaelis constant K(m) = 1.5 +/- 0.43 mM; R2 = 0.79]. Glucose removal was inhibited by phloridzin but not by phloretin or by inhibiting glycolysis. The steady-state concentration in fluid-filled lungs was estimated to be 0.15 +/- 0.034 mM. It agreed with that (< 1/20 plasma) calculated using glucose transport kinetics and paracellular permeability. The ELF glucose concentration obtained by bronchoalveolar lavage was 0.39 +/- 0.012 plasma in vivo and 0.39 +/- 0.021 perfusate in air-filled isolated lungs. The equilibrium ELF/perfusate distribution ratio of alpha-methyl-glucose was similar to that of glucose. Thus there is a major difference between the alveolar steady-state glucose concentration in air- and fluid-filled lungs despite similar mechanisms of airspace glucose removal. This suggests that glucose kinetics or access to uptake sites differ in air- and fluid-filled lungs.


Sign in / Sign up

Export Citation Format

Share Document