scholarly journals Regional CO2 Budget and Abatement Countermeasures for Forest Scenic Spots: A Case Study of the Shenyang National Forest Park

2021 ◽  
Vol 13 (2) ◽  
pp. 861
Author(s):  
Dan He ◽  
Ke Chen ◽  
Tingting Zhang ◽  
Mingfang Yin ◽  
Xiaoliang Shi ◽  
...  

We used the carbon carrying capacity as an indicator of environmental productivity, clarified the emission reduction thresholds and measures for achieving a carbon neutral tourism destination, and proposed a simple, objective, and universal method for estimating the carbon budget of forest tourism scenic spots with function of both carbon sinks and carbon emissions. According to the Intergovernmental Panel on Climate Change Guidelines for Greenhouse Gas Inventories and the Climate Friendly Parks tool, a carbon emissions list with a clear border and relatively complete content was established to characterize the negative impact of tourism activities on the environment. Forest resource inventory data and the CO2Fix method could be used to accurately calculate the carbon sinks of forest tourism scenic spots. In 2019, the total CO2 emissions in Shenyang National Forest Park were 1841.445 t. The amount of CO2 sequestered by the forest was 1336.787 t, accounting for 72.59% of the total CO2 emissions. Thus, tourism had a net CO2 deficit of 504.658 t. Electricity consumption, garbage disposal, raw coal consumption, infrastructure construction, and land-use changes of forestland were the top five sources of CO2 emissions. The augmentation of the carbon pool could be improved by 65.358% of the total budget through forest management. The reduction aims of 133.41%–150.32% could be easily reached through emissions-cutting measures. Based on these results, we suggest several measures for low-carbon sustainable tourism.

Author(s):  
Hongpeng Guo ◽  
Sidong Xie ◽  
Chulin Pan

This paper focuses on the impact of changes in planting industry structure on carbon emissions. Based on the statistical data of the planting industry in three provinces in Northeast China from 1999 to 2018, the study calculated the carbon emissions, carbon absorptions and net carbon sinks of the planting industry by using crop parameter estimation and carbon emissions inventory estimation methods. In addition, the multiple linear regression model and panel data model were used to analyze and test the carbon emissions and net carbon sinks of the planting industry. The results show that: (1). The increase of the planting area of rice, corn, and peanuts in the three northeastern provinces of China will promote carbon emissions, while the increase of the planting area of wheat, sorghum, soybeans, and vegetables will reduce carbon emissions; (2). Fertilizer application, technological progress, and planting structure factors have a significant positive effect on net carbon sinks, among which the changes in the planting industry structure have the greatest impact on net carbon sinks. Based on the comprehensive analysis, it is suggested that, under the guidance of the government, resource endowment and location advantages should be given full play to, and the internal planting structure of crops should be reasonably adjusted so as to promote the development of low-carbon agriculture and accelerate the development process of agricultural modernization.


Energies ◽  
2020 ◽  
Vol 13 (11) ◽  
pp. 2753
Author(s):  
Rok Gomilšek ◽  
Lidija Čuček ◽  
Marko Homšak ◽  
Raymond R. Tan ◽  
Zdravko Kravanja

The production of primary aluminum is an energy-intensive industry which produces large amounts of direct and indirect greenhouse gas emissions, especially from electricity consumption. Carbon Emissions Constrained Energy Planning proved to be an efficient tool for reducing energy-related greenhouse gas emissions. This study focuses on energy planning constrained by CO2 emissions and determines the required amount of CO2 emissions from electricity sources in order to meet specified CO2 emission benchmark. The study is demonstrated on and applied to specific aluminum products, aluminum slugs and aluminum evaporator panels. Three different approaches of energy planning are considered: (i) an insight-based, graphical targeting approach, (ii) an algebraic targeting approach of cascade analysis, and (iii) an optimization-based approach, using a transportation model. The results of the three approaches show that approximately 2.15 MWh of fossil energy source should be replaced with a zero-carbon or 2.22 MWh with a low-carbon energy source to satisfy the benchmark of CO2 emissions to produce 1 t of aluminum slug; however, this substitution results in higher costs. This study is the first of its kind demonstrated on and applied to specific aluminum products, and represents a step forward in the development of more sustainable practices in this field.


Author(s):  
Xin Li ◽  
Xiandan Cui ◽  
Minxi Wang

Reducing carbon emissions is a major ways to achieving green development and sustainability for China’s future. This paper elaborates the detailed feature of China's carbon flow for 2013 with the carbon flow chart and gives changing characteristics of China's CO2 flow from the viewpoint of sector and energy during 2000 and 2013. The results show that (1) during 2000 to 2013, China's CO2 emissions with the approximately growth portion of 9% annually, while the CO2 intensity of China diminishes at different rates. (2) The CO2 emissions from secondary industry are prominent from the perspective of four main sectors accounting for 83.5%. The manufacturing play an important part in the secondary industry with 45%. In which the "smelting and pressing of metal" takes up a large percentage as about 50% in manufacturing. (3) The CO2 emissions produced by coal consumption is keep dominant in energy-related emissions with a contribution of 65%, while it will decrease in the future. (4) From the aspect of sector, the CO2 emissions mainly come from the "electricity and heating" sector and the "smelting and pressing of metals" sub-sector. While it is essential and urgent to propose concrete recommendations for CO2 emissions mitigation. Firstly, the progression of creative technology is inevitable and undeniable. Secondly, the government should make different CO2 emissions reduction policies among different sectors. For example, the process emission plays an important role in "non-metallic mineral" while in "smelting and manufacturing of metals" it is energy. Thirdly, the country can change the energy structure and promote renewable energy for powering by wind or other low-carbon energy. Besides it, the coke oven gas can be a feasible substitution. Finally, policy maker should be aware of the emissions from residents have been growing in a fast rate. It is effective to involve the public in the activity of energy conservation and carbon emissions reduction such as reducing the times of personal transportation.


Energies ◽  
2019 ◽  
Vol 12 (10) ◽  
pp. 2025 ◽  
Author(s):  
Junbo Wang ◽  
Liu Chen ◽  
Lu Chen ◽  
Xiaohui Zhao ◽  
Minxi Wang ◽  
...  

The sustainable development of the western region of China has always been essential to the national development strategy. The Western region has undertaken an industrial transfer from the Eastern and Central regions. Therefore, the CO2 emission intensity in the western region is higher than those of the Eastern and Central regions of China, and consequently its low-carbon development pathway has an important impact for China as a whole. Sichuan Province is not only the province with the highest CO2 emissions, but also the most economically developed province in Western China in 2018. In order to promote low carbon development in the western region, it is important to understand the features of emissions in Sichuan Province and to formulate effective energy strategies accordingly. This paper uses the IPCC regional emission accounting method to calculate the carbon emissions of 15 cities in Sichuan province, and to comply with the city-level emission accounts. The results show that the total carbon emissions of Sichuan province over the past 10 years was 3258.32 mt and reached a peak in 2012. The smelting and pressing of ferrous metals, coal mining and dressing were the leading sectors that contributed to the emissions, accounting for 17.86% and 15.82%, respectively. Raw coal, cleaned coal, and coke were the most significant contributors to CO2 emissions, accounting for 43.73%, 9.55%, and 6.60%, respectively. Following the above results, the Sichuan provincial government can formulate differentiated energy structure policies according to different energy consumption structures and carbon emission levels in the 15 cities. By controlling the level of total emissions and regulating larger industrial emitters in Sichuan province, some useful information could be provided as an essential reference for low-carbon development in Western China, and contribute to the promotion of emissions mitigation from a more holistic perspective.


2020 ◽  
Vol 60 (2) ◽  
pp. 583
Author(s):  
Clare Anderson

The Paris Agreement, signed in 2016, has the objective of limiting the global temperature rise to 1.5°C to substantially reduce the effects of climate change. To achieve this objective, significant and unprecedented deep cuts in carbon emissions are required, as set out in the Intergovernmental Panel on Climate Change’s special report on Global Warming of 1.5°C released in October 2018. To enable this ambitious target, global reductions in carbon emissions will need to be markedly reduced to an average of net zero by 2050 and, as such, will have profound effects on hydrocarbon (oil and gas) production in the coming decades. This paper presents a road map of opportunities for the reduction of carbon emissions from hydrocarbon production, specifically natural gas. It includes technologies for reducing carbon emissions from process streams and utility streams. A case study is used to illustrate the opportunities, along with a discussion on technology readiness for several options.


Author(s):  
Decai Tang ◽  
Yan Zhang ◽  
Brandon J Bethel

The Yangtze River Economic Belt (YREB) is an essential part of China’s goal of reducing its national carbon emissions. Focusing on economic and social development, the development of science and technology, carbon sinks, energy consumption, and carbon emissions, this paper uses “the Technique for Order of Preference by Similarity to Ideal Solution mode” (TOPSIS) and “an obstacle factor diagnosis method” to measure the reduction capacity of each province and municipality of the YREB. Key obstacles to achieving the goal of carbon emission reduction are also identified. The main finding is that the emission reduction capacities of Shanghai, Jiangsu and Zhejiang in China’s east is far greater than that of all other provinces and municipalities, the main obstacle of Shanghai, Jiangsu, and Zhejiang are carbon sinks, energy consumption and carbon emission, and other provinces and municipalities are social and economic development. Taking into consideration those evaluation results and obstacles, paths for carbon emission reduction are delineated through a four-quadrant matrix method with intent to provide suitable references for the development of a low-carbon economy in the YREB.


Energies ◽  
2020 ◽  
Vol 13 (2) ◽  
pp. 453 ◽  
Author(s):  
Gang Lin ◽  
Dong Jiang ◽  
Donglin Dong ◽  
Jingying Fu ◽  
Xiang Li

The objective of this paper is to investigate CO2 emissions in the production of coal sources at the prefecture level and to analyze their spatial distribution and regional differences based on the spatial autocorrelation and standard deviational ellipse analysis. The results indicate that Chinese coal production from 2018 will most likely generate 485.23 million tons of CO2 emissions, and there still exists an obvious gap between the five coal development districts in terms of their CO2 emissions. A significant clustering pattern and positive spatial autocorrelation are revealed in the coal production-based carbon emissions in China. In addition, the spatial pattern of coal production-based CO2 emissions has an obvious central tendency and directional trend, and the ellipse direction is quite consistent with the Aihui–Tengchong Line. Our findings suggest that energy policy-makers should be concerned about the carbon emission effect when implementing regional coal development plans and actively guide the formation of a low-carbon spatial strategic pattern of coal production with a directional distribution of CO2 emissions perpendicular to the Aihui–Tengchong Line.


2018 ◽  
Vol 11 (1) ◽  
pp. 11 ◽  
Author(s):  
Dang Han ◽  
Ruilin Qiao ◽  
Xiaoming Ma

The approach of choosing an effective low-carbon land-use structure by multi-objective methods is commonly used in land-use planning. A common methodology is to calculate carbon emissions and conduct scenario simulations for the future. However, most Chinese cities have not implemented the methods for monitoring carbon emissions proposed by the Intergovernmental Panel on Climate Change (IPCC), especially Shenzhen, which is one of the fastest-growing cities in China. This study first calculated the carbon emissions for a typical year in Shenzhen under the guidance of the IPCC. Second, nighttime light data were used to spatialize the gross domestic product to obtain the economic benefit coefficients of the various land types. Finally, a multi-objective linear programming model was used to optimize the land-use structure under different scenarios for 2020 and 2025. The results show that (i) energy consumption contributed the most to local carbon emissions in 2016, at 94.75%; (ii) carbon emissions from paddy fields, animals, and humans were the second most dominant source; (iii) the intensity of carbon emissions from different land types in 2016 was variable; and (iv) compared with the natural scenario, an optimized land-use structure could reduce carbon emissions by 5.97% by 2020 and 12.61% by 2025. Under ideal simulation conditions, the simulated land-use pattern could not only meet the requirements of economic and social development, but also could effectively reduce carbon emissions, which is of great value to land managers and decision-makers.


Processes ◽  
2019 ◽  
Vol 7 (12) ◽  
pp. 923 ◽  
Author(s):  
Mihail Busu

Low carbon emissions have a great importance in our life. The increasing importance of carbon emission levels have attracted the interests of researchers and academics in the field. In this article, a panel data econometric model is developed to measure the relationship between renewable energy, energy productivity, population, urbanization, motorization, and Gross Domestic Product (GDP) per capita and their impacts on carbon dioxide CO2 emissions. Data used in this study was collected from the European Statistical Office (EUROSTAT) and five statistical hypotheses were tested and validated through a multilinear regression model using the Econometric Views (Eviews) 10.0 statistical software. The Hausman test was used to choose between a model with fixed effects and a model with random effects, and the variance inflection factor (VIF) was used to test the collinearity between the independent variables. The author’s findings indicate that renewable energy at the European Union (EU) level has a positive impact on low-carbon emissions. It was found that a 1% increase in renewable energy consumption would reduce the CO2 emissions by 0.11 million tons, while population growth and urbanization degree add more restrictions to the econometric equation of the impact on carbon emissions.


Author(s):  
Weijiang Liu ◽  
Yangyang Li ◽  
Tingting Liu ◽  
Min Liu ◽  
Hai Wei

Facing the increasingly severe environmental problems, the development of a green and sustainable low-carbon economy has become an international trend. In China, the core issue of low-carbon economic development is effectively resolving the contradiction between the exploitation and utilization of fossil energy and greenhouse gas emissions (mainly carbon emissions). Based on the SAM matrix, we established a static Computable General Equilibrium (CGE) model to simulate the impact of carbon tax policies on energy consumption, carbon emissions, and macroeconomics variables under 10, 20, and 30% emission reductions. Meanwhile, we analyze the impact of different carbon tax recycling mechanisms under the principle of tax neutrality. We find that the carbon tax effectively reduces carbon emissions, but it will negatively impact economic development and social welfare. A reasonable carbon tax recycling system based on the principle of tax neutrality can reduce the negative impact of carbon tax implementation. Among the four simulated scenarios of carbon tax cycle, the scenario of reducing residents’ personal income tax is most conducive to realizing the “double dividend” of carbon tax.


Sign in / Sign up

Export Citation Format

Share Document