scholarly journals Effects of Exogenous Microbial Agents on Soil Nutrient and Microbial Community Composition in Greenhouse-Derived Vegetable Straw Composts

2021 ◽  
Vol 13 (5) ◽  
pp. 2925
Author(s):  
Cuixia Yun ◽  
Changrong Yan ◽  
Yinghao Xue ◽  
Zhiyu Xu ◽  
Tuo Jin ◽  
...  

Vegetable waste causes resource waste and environmental pollution, giving rise to the spread of harmful organisms and causing disease in normal vegetable cultivation. Random distribution of vegetable waste can increase the risk of non-point agricultural pollution and explore the feasibility of its resource utilization. This study was designed to evaluate the effects of different doses of exogenous microbial agents on soil microbial communities after in situ composting of cucumber straw on plots with biodegradable mulch films. The cucumber straw and chicken manure were used as the base materials, and the next generation sequencing was used to analyze changes in the microbiome following composting. The results demonstrate that the addition of exogenous microbial agents had prolonged the high-temperature duration, reduced the total organic carbon (TOC) content, and accelerated the decline in the C/N ratio, ensuring compost maturity and effectively shortening the composting time. The predominant bacterial phyla of the four treatment groups were Proteobacteria and Firmicutes; while among fungal phyla, these treatments decreased the relative abundance of Ascomycota. The treatment of 300 t/ha microbial agents significantly increased the richness and diversity of both the bacterial and fungal communities. Redundancy analysis suggested that soil total nitrogen (TN) content had a significant effect on the bacterial community, while TN content, pH, and temperature influenced the fungal community in these samples. Collectively, the treatment of 300 t/ha exogenous microbial agents improved the quality of composting and promoted microbiome diversity.

2015 ◽  
Vol 12 (18) ◽  
pp. 5537-5546 ◽  
Author(s):  
W. Y. Dong ◽  
X. Y. Zhang ◽  
X. Y. Liu ◽  
X. L. Fu ◽  
F. S. Chen ◽  
...  

Abstract. Nitrogen (N) and phosphorus (P) additions to forest ecosystems are known to influence various above-ground properties, such as plant productivity and composition, and below-ground properties, such as soil nutrient cycling. However, our understanding of how soil microbial communities and their functions respond to nutrient additions in subtropical plantations is still not complete. In this study, we added N and P to Chinese fir plantations in subtropical China to examine how nutrient additions influenced soil microbial community composition and enzyme activities. The results showed that most soil microbial properties were responsive to N and/or P additions, but responses often varied depending on the nutrient added and the quantity added. For instance, there were more than 30 % greater increases in the activities of β-glucosidase (βG) and N-acetyl-β-D-glucosaminidase (NAG) in the treatments that received nutrient additions compared to the control plot, whereas acid phosphatase (aP) activity was always higher (57 and 71 %, respectively) in the P treatment. N and P additions greatly enhanced the phospholipid fatty acids (PLFAs) abundance especially in the N2P (100 kg ha−1 yr−1 of N +50 kg ha−1 yr−1 of P) treatment; the bacterial PLFAs (bacPLFAs), fungal PLFAs (funPLFAs) and actinomycic PLFAs (actPLFAs) were about 2.5, 3 and 4 times higher, respectively, than in the CK (control). Soil enzyme activities were noticeably higher in November than in July, mainly due to seasonal differences in soil moisture content (SMC). βG or NAG activities were significantly and positively correlated with microbial PLFAs. These findings indicate that βG and NAG would be useful tools for assessing the biogeochemical transformation and metabolic activity of soil microbes. We recommend combined additions of N and P fertilizer to promote soil fertility and microbial activity in this kind of plantation.


2021 ◽  
Vol 49 (4) ◽  
pp. 12532
Author(s):  
Ali I. MALLANO ◽  
Xianli ZHAO ◽  
Yanling SUN ◽  
Guangpin JIANG ◽  
Huang CHAO

Continuous cropping systems are the leading cause of decreased soil biological environments in terms of unstable microbial population and diversity index. Nonetheless, their responses to consecutive peanut monocropping cycles have not been thoroughly investigated. In this study, the structure and abundance of microbial communities were characterized using pyrosequencing-based approach in peanut monocropping cycles for three consecutive years. The results showed that continuous peanut cultivation led to a substantial decrease in soil microbial abundance and diversity from initial cropping cycle (T1) to later cropping cycle (T3). Peanut rhizosphere soil had Actinobacteria, Protobacteria, and Gemmatimonadetes as the major bacterial phyla. Ascomycota, Basidiomycota were the major fungal phylum, while Crenarchaeota and Euryarchaeota were the most dominant phyla of archaea. Several bacterial, fungal and archaeal taxa were significantly changed in abundance under continuous peanut cultivation. Bacterial orders, Actinomycetales, Rhodospirillales and Sphingomonadales showed decreasing trends from T1>T2>T3. While, pathogenic fungi Phoma was increased and beneficial fungal taxa Glomeraceae decreased under continuous monocropping. Moreover, Archaeal order Nitrososphaerales observed less abundant in first two cycles (T1&T2), however, it increased in third cycle (T3), whereas, Thermoplasmata exhibit decreased trends throughout consecutive monocropping. Taken together, we have shown the taxonomic profiles of peanut rhizosphere communities that were affected by continuous peanut monocropping. The results obtained from this study pave ways towards a better understanding of the peanut rhizosphere soil microbial communities in response to continuous cropping cycles, which could be used as bioindicator to monitor soil quality, plant health and land management practices.


2015 ◽  
Vol 12 (13) ◽  
pp. 10359-10387 ◽  
Author(s):  
W. Y. Dong ◽  
X. Y. Zhang ◽  
X. Y. Liu ◽  
X. L. Fu ◽  
F. S. Chen ◽  
...  

Abstract. Nitrogen (N) and phosphorus (P) additions to forest ecosystems are known to influence various above-ground properties, such as plant productivity and composition, and below-ground properties, such as soil nutrient cycling. However, our understanding of how soil microbial communities and their functions respond to nutrient additions in subtropical plantations is still not complete. In this study, we added N and P to Chinese fir plantations in subtropical China to examine how nutrient additions influenced soil microbial community composition and enzyme activities. The results showed that most soil microbial properties were responsive to N and/or P additions, but responses often varied depending on the nutrient added and the quantity added. For instance, there were more than 30 % greater increases in the activities of β-Glucosidase (βG) and N-acetyl-β-D-glucosaminidase (NAG) in the treatments that received nutrient additions compared to the control plot, whereas acid phosphatase (aP) activity was always higher (57 and 71 %, respectively) in the P treatment. N and P additions greatly enhanced the PLFA abundanceespecially in the N2P treatment, the bacterial PLFAs (bacPLFAs), fungal PLFAs (funPLFAs) and actinomycic PLFAs (actPLFAs) were about 2.5, 3 and 4 times higher, respectively, than in the CK. Soil enzyme activities were noticeably higher in November than in July, mainly due to seasonal differences in soil moisture content (SMC). βG or NAG activities were significantly and positively correlated with microbial PLFAs. There were also significant relationships between gram-positive (G+) bacteria and all three soil enzymes. These findings indicate that G+ bacteria is the most important microbial community in C, N, and P transformations in Chinese fir plantations, and that βG and NAG would be useful tools for assessing the biogeochemical transformation and metabolic activity of soil microbes. We recommend combined additions of N and P fertilizer to promote soil fertility and microbial activity in this kind of plantation.


2020 ◽  
Author(s):  
Marc W. Van Goethem ◽  
Surendra Vikram ◽  
David W. Hopkins ◽  
Grant Hall ◽  
Stephan Woodborne ◽  
...  

AbstractThe balance of nutrients in soil is critical for microbial growth and function, and stoichiometric values below the Redfield ratio for C:N:P can negatively affect microbial ecosystem services. However, few studies have assessed the relationships between nutrient balance and biological productivity in extremely nutrient-poor habitats. The Mackay Glacier region of Eastern Antarctica is a hyper-oligotrophic ice-free desert and is an appropriate landscape to evaluate the effects of nutrient deficiency and imbalance on microbial community ecology. In a survey of multiple, widely dispersed soil samples from this region, we detected only low rates of microbial respiration, and observed that C:N:P ratios were well below those required for optimal activity. In silico metagenomic and soil isotopic ratio (δ15N) analyses indicated that the capacity for nitrogen fixation was low, but that soil microbial communities were enriched for soil nitrate assimilation processes, mostly associated with heterotrophic taxa. δ13C isotope ratio data suggested that carbon dioxide was fixed principally via the Calvin cycle. Genes involved in this pathway were common to all metagenomes and were primarily attributed to members of the dominant soil bacterial phyla: Bacteroidetes and Acidobacteria. The identification of multiple genes encoding non-photoautotrophic RUBISCO and carbon dioxide dehydrogenase enzymes in both the metagenomic sequences and assembled MAGs is suggestive of a trace-gas scavenging physiology in members of these soil communities.


2021 ◽  
Author(s):  
Dajana Radujković ◽  
Sara Vicca ◽  
Margaretha van Rooyen ◽  
Peter Wilfahrt ◽  
Leslie Brown ◽  
...  

Environmental circumstances shaping soil microbial communities have been studied extensively, but due to disparate study designs it has been difficult to resolve whether a globally consistent set of predictors exists, or context-dependency prevails. Here, we used a network of 18 grassland sites (11 sampled across regional plant productivity gradients) to examine i) if the same abiotic or biotic factors predict both large- and regional-scale patterns in bacterial and fungal community composition, and ii) if microbial community composition differs consistently with regional plant productivity (low vs high) across different sites. We found that there is high congruence between predictors of microbial community composition across spatial scales; bacteria were predominantly associated with soil properties and fungi with plant community composition. Moreover, there was a microbial community signal that clearly distinguished high and low productivity soils that was shared across worldwide distributed grasslands suggesting that microbial assemblages vary predictably depending on grassland productivity.


mBio ◽  
2020 ◽  
Vol 11 (1) ◽  
Author(s):  
Paul Carini ◽  
Manuel Delgado-Baquerizo ◽  
Eve-Lyn S. Hinckley ◽  
Hannah Holland‐Moritz ◽  
Tess E. Brewer ◽  
...  

ABSTRACT Few studies have comprehensively investigated the temporal variability in soil microbial communities despite widespread recognition that the belowground environment is dynamic. In part, this stems from the challenges associated with the high degree of spatial heterogeneity in soil microbial communities and because the presence of relic DNA (DNA from dead cells or secreted extracellular DNA) may dampen temporal signals. Here, we disentangle the relationships among spatial, temporal, and relic DNA effects on prokaryotic and fungal communities in soils collected from contrasting hillslopes in Colorado, USA. We intensively sampled plots on each hillslope over 6 months to discriminate between temporal variability, intraplot spatial heterogeneity, and relic DNA effects on the soil prokaryotic and fungal communities. We show that the intraplot spatial variability in microbial community composition was strong and independent of relic DNA effects and that these spatial patterns persisted throughout the study. When controlling for intraplot spatial variability, we identified significant temporal variability in both plots over the 6-month study. These microbial communities were more dissimilar over time after relic DNA was removed, suggesting that relic DNA hinders the detection of important temporal dynamics in belowground microbial communities. We identified microbial taxa that exhibited shared temporal responses and show that these responses were often predictable from temporal changes in soil conditions. Our findings highlight approaches that can be used to better characterize temporal shifts in soil microbial communities, information that is critical for predicting the environmental preferences of individual soil microbial taxa and identifying linkages between soil microbial community composition and belowground processes. IMPORTANCE Nearly all microbial communities are dynamic in time. Understanding how temporal dynamics in microbial community structure affect soil biogeochemistry and fertility are key to being able to predict the responses of the soil microbiome to environmental perturbations. Here, we explain the effects of soil spatial structure and relic DNA on the determination of microbial community fluctuations over time. We found that intensive spatial sampling was required to identify temporal effects in microbial communities because of the high degree of spatial heterogeneity in soil and that DNA from nonliving sources masks important temporal patterns. We identified groups of microbes with shared temporal responses and show that these patterns were predictable from changes in soil characteristics. These results provide insight into the environmental preferences and temporal relationships between individual microbial taxa and highlight the importance of considering relic DNA when trying to detect temporal dynamics in belowground communities.


Forests ◽  
2020 ◽  
Vol 11 (10) ◽  
pp. 1027
Author(s):  
Dandan Qi ◽  
Fujuan Feng ◽  
Yanmei Fu ◽  
Ximei Ji ◽  
Xianfa Liu

Microbes, as important regulators of ecosystem processes, play essential roles in ecosystem recovery after disturbances. However, it is not clear how soil microbial communities and functions change and affect forest recovery after clear-cutting. Here, we used metagenome sequencing to systematically analyse the differences in soil microbial community composition, functions, and nitrogen (N) cycling pathways between primary Korean pine forests (PF) and secondary broad-leaved forests (SF) formed after clear-cutting. Our results showed that the dominant phyla of the two forest types were consistent, but the relative abundance of some phyla was significantly different. Meanwhile, at the genus level, the fold-changes of rare genera were larger than the dominant and common genera. The genes related to microbial core metabolic functions, virulence factors, stress response, and defence were significantly enriched in SF. Additionally, based on the relative abundance of functional genes, a schema was proposed to analyse the differences in the whole N cycling processes between the two forest types. In PF, the stronger ammoniation and dissimilatory nitrate reduction (DNRA) and the weaker nitrification provided a genetic explanation for PF dominated by ammonium (NH4+) rather than nitrate (NO3−). In SF, the weaker DNRA, the stronger nitrification and denitrification, the higher soil available phosphorus (AP), and the lower nitrogen to phosphorus ratio (N/P) comprehensively suggested that SF was faced with a greater degree of N limitation. These results offer insights into the potential relationship between soil microbes and forest recovery, and aid in implementing proper forestry management.


Elem Sci Anth ◽  
2020 ◽  
Vol 8 (1) ◽  
Author(s):  
Grace Pold ◽  
Luiz A. Domeignoz-Horta ◽  
Kristen M. DeAngelis

Soils store more carbon than the biosphere and atmosphere combined, and the efficiency to which soil microorganisms allocate carbon to growth rather than respiration is increasingly considered a proxy for the soil capacity to store carbon. This carbon use efficiency (CUE) is measured via different methods, and more recently, the 18O-H2O method has been embraced as a significant improvement for measuring CUE of soil microbial communities. Based on extrapolating 18O incorporation into DNA to new biomass, this measurement makes various implicit assumptions about the microbial community at hand. Here we conducted a literature review to evaluate how viable these assumptions are and then developed a mathematical model to test how violating them affects estimates of the growth component of CUE in soil. We applied this model to previously collected data from two kinds of soil microbial communities. By changing one parameter at a time, we confirmed our previous observation that CUE was reduced by fungal removal. Our results also show that depending on the microbial community composition, there can be substantial discrepancies between estimated and true microbial growth. Of the numerous implicit assumptions that might be violated, not accounting for the contribution of sources of oxygen other than extracellular water to DNA leads to a consistent underestimation of CUE. We present a framework that allows researchers to evaluate how their experimental conditions may influence their 18O-H2O-based CUE measurements and suggest the parameters that need further constraining to more accurately quantify growth and CUE.


PeerJ ◽  
2022 ◽  
Vol 10 ◽  
pp. e12753
Author(s):  
Ahmad Yusuf Abubakar ◽  
Muhammed Mustapha Ibrahim ◽  
Caifang Zhang ◽  
Muhammad Tayyab ◽  
Nyumah Fallah ◽  
...  

Background Exploring high-quality organic amendments has been a focus of sustainable agriculture. Filtered mud (FM), a sugar factory waste derived from sugarcane stems, could be an alternative organic amendment for sugarcane production. However, the effects of its application proportions on soil fertility, nutrient cycling, structure of soil bacterial and fungal communities, and the growth of sugarcane in clay-loam soils remain unexplored. Methods Three application proportions of FM: (FM1-(FM: Soil at 1:4), FM2-(FM: Soil at 2:3), and FM3-(FM: Soil at 3:2)) were evaluated on sugarcane growth and soil nutrient cycling. High throughput sequencing was also employed to explore soil microbial dynamics. Results We observed that FM generally increased the soil’s nutritional properties while improving NO3− retention compared to the control, resulting in increased growth parameters of sugarcane. Specifically, FM1 increased the concentration of NH4+−N, the N fraction preferably taken up by sugarcane, which was associated with an increase in the plant height, and more improved growth properties, among other treatments. An increase in the proportion of FM also increased the activity of soil nutrient cycling enzymes; urease, phosphatase, and β-glucosidase. High throughput sequencing revealed that FM reduced the diversity of soil bacteria while having insignificant effects on fungal diversity. Although increasing FM rates reduced the relative abundance of the phyla Proteobacteria, its class members, the Gammaproteobacteria and Betaproteobacteria containing some N-cycling related genera, were stimulated. Also, FM stimulated the abundance of beneficial and lignocellulose degrading organisms. These included the bacterial phyla Actinobacteria, Bacteroidetes, Acidobacteria, Chloroflexi, and the fungal phylum Ascomycota. The distribution of the soil microbial community under FM rates was regulated by the changes in soil pH and the availability of soil nutrients. Since FM1 showed more promise in improving the growth properties of sugarcane, it could be more economical and sustainable for sugarcane production in clay-loam soils.


2019 ◽  
Vol 13 (12) ◽  
pp. 1873
Author(s):  
Syuhriatin Syuhriatin ◽  
Alvin Juniawan

Human’s increasing activity causes an immense increase in domestic waste. one form of domestic waste which could harm environment is vegetable waste. in this research, vegetables waste is used as based material of liquid compost. The process of producing liquid compost with vegetables waste as the base materials was using EM4 fermentation method as a starter and zeolite 80-100  mesh as the bind for soil nutrient in liquid compost. In the fermentation process, the researcher conducted 3 different behaviors in adding EM4 and Zeolite, in each 10 gr, 20 gr and 30 gr of EM4; and 40 gr, 60 gr and 80 gr of Zeolite. The fermentation process was conducted  in 40 days. The liquid compost samples were analized for pH, C-Organic, N-total, P-total and K-total. The results showed that highest concentrate of soil nutrient was from the adding of 30 gr EM4 and 80 gr Zeolite in which the result was 0.27% C- organik, 0,07 %  N-total, 0,04 % , P-Total dan 0,46 %  K-Total.


Sign in / Sign up

Export Citation Format

Share Document