scholarly journals Techno-Economic Assessment of Rooftop PV Systems in Residential Buildings in Hot–Humid Climates

2020 ◽  
Vol 12 (23) ◽  
pp. 10060
Author(s):  
Ammar Hamoud Ahmad Dehwah ◽  
Muhammad Asif ◽  
Ismail Mohammad Budaiwi ◽  
Adel Alshibani

The application of renewable energy has been an integral part of the sustainability drive in the building sector and solar photovoltaic (PV) is one of the most effective technologies in this respect. The present study aims to investigate the prospects of solar PV in residential buildings in the hot–humid climatic conditions. The study discusses the utilization of building roofs for the application of PV in terms of potential hurdles and utilization factor (UF). Technical performance of PV systems has also been investigated in terms of power output as well as the energy saved as a result of the shading impact of panels for two types of residential units, apartments and villas. Investigation of 70 sample residential buildings reveals the average UF of 0.21 and 0.28 for apartments and villas, respectively. For the case study of apartment and villa residential units, roof UF has been found to be 13% and 15% with a respective PV output of 6079 kWh/year and 6162 kWh/year. Potential PV output at the city level has also been estimated. A sensitivity analysis has been conducted to evaluate the impact of various cost and design parameters on the viability of PV systems.

2013 ◽  
Vol 21 (01) ◽  
pp. 1350002 ◽  
Author(s):  
YOUNES KARTACHI ◽  
ABDELLAH MECHAQRANE

In this study, we analyze the impact of ventilation heat recovery with the heating and cooling potential of earth air heat exchanger in real climatic conditions in domestic buildings in the Middle Atlas region. In our case study, we calculate the primary energy used by a domestic building built as per the conventional house design parameters required by the Moroccan regulation. We use climate data for the city of Fes in Northern Moroccan. Three system configurations were considered. The first was the mechanical extract ventilation system both with and without heat recovery. The second was the mechanical extract ventilation system with earth to air heat exchanger system (EAHEX), and the third system was the mechanical balanced ventilation system coupled with EAHEX system. Primary energy use strongly influences natural resources efficiency and the environmental impacts of energy supply activities. In this study we explore the primary energy implications of the mechanical balanced ventilation system coupled with the EAHEX system in residential buildings. The results of this study shows that the use of a balanced ventilation system, with a high efficiency instead of a mechanical extract ventilation system, decreases the final and primary energy consumption. Moreover, it decreases or increases the CO2 emission depending on the primary energy sources.


2019 ◽  
Vol 8 (1) ◽  
pp. 34-52 ◽  
Author(s):  
M. Asif ◽  
Mohammad A. Hassanain ◽  
Kh Md Nahiduzzaman ◽  
Haitham Sawalha

Purpose The Kingdom of Saudi Arabia (KSA) is facing a rapid growth in energy demand mainly because of factors like burgeoning population, economic growth, modernization and infrastructure development. It is estimated that between 2000 and 2017 the power consumption has increased from 120 to 315 TWh. The building sector has an important role in this respect as it accounts for around 80 percent of the total electricity consumption. The situation is imposing significant energy, environmental and economic challenges for the country. To tackle these problems and curtail its dependence on oil-based energy infrastructure, KSA is aiming to develop 9.5 GW of renewable energy projects by 2030. The campus of the King Fahd University of Petroleum and Minerals (KFUPM) has been considered as a case study. In the wake of recently announced net-metering policy, the purpose of this paper is to investigate the prospects of rooftop application of PV in buildings. ArcGIS and PVsyst software have been used to determine the rooftop area and undertake PV system modeling respectively. Performance of PV system has been investigated for both horizontal and tilted installations. The study also investigates the economic feasibility of the PV application with the help of various economic parameters such as benefit cost ratio, simple payback period (SPP) and equity payback periods. An environmental analysis has also been carried out with the help of RETScreen software to determine the savings in greenhouse gas emissions as a result of PV system. Design/methodology/approach This study examines the buildings of the university campus for utilizable rooftop areas for PV application. Various types of structural, architectural and utilities-related features affecting the use of building roofs for PV have been investigated to determine the corrected area. To optimize the performance of the PV system as well as space utilization, modeling has been carried out for both horizontal and tilted applications of panels. Detailed economic and environmental assessments of the rooftop PV systems have also been investigated in detail. Modern software tools such as PVsyst, ArcGIS and RETScreen have also been used for system design calculations. Findings Saudi Arabia is embarking on a massive solar energy program as it plans to have over 200 GW of installed capacity by 2030. With solar energy being the most abundant of the available renewable resource for the country, PV is going to be one of the main technologies in achieving the set targets. The country has, however, unlike global trends, traditionally overlooked the small-scale and building-related application of solar PV, focusing mainly on larger projects. This study explores the prospects of utilization of solar PV on building roofs. Building rooftops are constrained in terms of PV application owing to wide ranging obstacles that can be classified into five types – structural, services, accessibility, maintenance and others. The total building rooftop area in the study zone, calculated through ArcGIS has been found to be 857,408 m2 of which 352,244 m2 is being used as car parking and hence is not available for PV application. The available roof area, 505,165 m2 is further hampered by construction and utilities related features including staircases, HVAC systems, skylights, water tanks and satellite dish antennas. Taking into account the relevant obstructive features, the net rooftop area covered by PV panels has been found to be in the range 25–41 percent depending upon the building typology, with residential buildings offering the least. To optimize both the system efficiency and space utilization, PV modeling has been carried out with the help of PVsyst software for both the tilted and horizontal installations. In terms of output, PV panels with tilt angle of 24° have been found to be 9 percent more efficient compared to the horizontally installed ones. Modeling results provide a net annual output 37,750 and 46,050 MWh from 21.44 and 28.51 MW of tilted and horizontal application of PV panels, sufficient to respectively meet 16 and 20 percent of the total campus electricity requirements. Findings of the economic analysis reveal the average SPP for horizontal and tilted applications of the PV to be 9.2 and 8.4 years, respectively. The benefit cost ratio for different types of buildings for horizontal and tilted application has been found to be ranging between 0.89 and 2.08 and 0.83 and 2.15, respectively. As electricity tariff in Saudi Arabia has been increased this year by as much as 45 percent and there are plans to remove $54bn of subsidy by 2020, the cost effectiveness of PV systems will be greatly helped. Application of PV in buildings can significantly improve their environmental performance as the findings of this study reveal that the annual greenhouse gas emission in the KFUPM campus can be reduced by as much as 40,199 tons carbon dioxide equivalent. Originality/value The PV application on building roof especially from economic perspective is an area which has not been addressed thus far. Khan et al. (2017) studied the power generation potential for PV application on residential buildings in KSA. Asif (2016) also investigated power output potential of PV system in different types of buildings. Dehwas et al. (2018) adopted a detailed approach to determine utilizability of PV on residential building roofs. None of these studies have covered the economics of PV systems. This study attempts to address the gap and contribute to the scholarship on the subject. It targets to determine the power output from different types of building in an urban environment by taking into account building roof conditions. It also provides detailed economic assessment of PV systems. Subsequent environmental savings are also calculated.


2020 ◽  
Vol 12 (24) ◽  
pp. 10344
Author(s):  
Sameh Monna ◽  
Adel Juaidi ◽  
Ramez Abdallah ◽  
Mohammed Itma

This paper targets the future energy sustainability and aims to estimate the potential energy production from installing photovoltaic (PV) systems on the rooftop of apartment’s residential buildings, which represent the largest building sector. Analysis of the residential building typologies was carried out to select the most used residential building types in terms of building roof area, number of floors, and the number of apartments on each floor. A computer simulation tool has been used to calculate the electricity production for each building type, for three different tilt angles to estimate the electricity production. Tilt angle, spacing between the arrays, the building shape, shading from PV arrays, and other roof elements were analyzed for optimum and maximum electricity production. The electricity production for each household has been compared to typical household electricity consumption and its future consumption in 2030. The results show that installing PV systems on residential buildings can speed the transition to renewable energy and energy sustainability. The electricity production for building types with 2–4 residential units can surplus their estimated future consumption. Building types with 4–8 residential units can produce their electricity consumption in 2030. Building types of 12–24 residential units can produce more than half of their 2030 future consumption.


Energies ◽  
2020 ◽  
Vol 13 (18) ◽  
pp. 4820 ◽  
Author(s):  
Moiz Masood Syed ◽  
Gregory M. Morrison ◽  
James Darbyshire

More than 2 million houses in Australia have installed solar photovoltaic (PV) systems; however, apartment buildings have adopted a low percentage of solar PV and battery storage installations. Given that grid usage reduction through PV and battery storage is a primary objective in most residential buildings, apartments have not yet fully benefited from installations of such systems. This research presents shared microgrid configurations for three apartment buildings with PV and battery storage and evaluates the reduction in grid electricity usage by analyzing self-sufficiency. The results reveal that the three studied sites at White Gum Valley achieved an overall self-sufficiency of more than 60%. Owing to the infancy of the shared solar and battery storage market for apartment complexes and lack of available data, this study fills the research gap by presenting preliminary quantitative findings from implementation in apartment buildings.


Author(s):  
K. Agyenim-Boateng ◽  
R. F. Boehm

The promise of large-scale use of renewables such as wind and solar for supplying electrical power is tempered by the sources’ transient behavior and the impact this would have on the operation of the grid. One way of addressing this is through the use of supplemental energy storage. While the technology for the latter has not been proven on a large scale or to be economical at the present time, some assessments of what magnitude is required can be made. In performing this work we have used NREL’s Solar Advisor Model (SAM 2010) with TMY3 solar data to estimate the photovoltaic system power generation. Climatic conditions close to load centers were chosen for the simulations. Then the PV output for varying sizes of arrays were examined and the impact of varying amounts of storage investigated. The storage was characterized by maximum limiting energy and power capacities based on annual hourly peak load, as well as its charging and discharging efficiencies. The simulations were performed using hourly time steps with energy withdrawn from, or input to, storage only after considering base generation and the PV system output in serving the grid load. In this work, we examined the load matching capability of solar PV generation (orientated for maximum summer output) for a sample Southwestern US utility grid load of 2008. Specifically we evaluated the daily and seasonal peak load shifting with employing varying storage capacities. The annual average energy penetration based on the usable solar PV output is also examined under these conditions and at different levels of system flexibility.


Electronics ◽  
2019 ◽  
Vol 8 (12) ◽  
pp. 1443 ◽  
Author(s):  
Abdullah Alshahrani ◽  
Siddig Omer ◽  
Yuehong Su ◽  
Elamin Mohamed ◽  
Saleh Alotaibi

Decarbonisation, energy security and expanding energy access are the main driving forces behind the worldwide increasing attention in renewable energy. This paper focuses on the solar photovoltaic (PV) technology because, currently, it has the most attention in the energy sector due to the sharp drop in the solar PV system cost, which was one of the main barriers of PV large-scale deployment. Firstly, this paper extensively reviews the technical challenges, potential technical solutions and the research carried out in integrating high shares of small-scale PV systems into the distribution network of the grid in order to give a clearer picture of the impact since most of the PV systems installations were at small scales and connected into the distribution network. The paper reviews the localised technical challenges, grid stability challenges and technical solutions on integrating large-scale PV systems into the transmission network of the grid. In addition, the current practices for managing the variability of large-scale PV systems by the grid operators are discussed. Finally, this paper concludes by summarising the critical technical aspects facing the integration of the PV system depending on their size into the grid, in which it provides a strong point of reference and a useful framework for the researchers planning to exploit this field further on.


2017 ◽  
Vol 24 (2) ◽  
pp. 358-382 ◽  
Author(s):  
Minhyun LEE ◽  
Taehoon HONG ◽  
Choongwan KOO ◽  
Chan-Joong KIM

Despite the steady growth and price reductions of solar photovoltaic (PV) market in the United States (U.S.), the solar PV market still depends on financial support and incentives due to its high initial investment cost. Therefore, this study aimed to conduct a break-even analysis and impact analysis of residential solar PV systems by state in the U.S., focused on state solar incentives. Three indexes (i.e., net present value, profitability index (PI) and payback period) were used to evaluate the investment value of the residential solar PV systems considering state solar incentives. Furthermore, PI increase ratio was used to analyze the impact of state solar incentives on the economic feasibility of the residential solar PV systems in each state. As a result, it was found that 18 of the 51 target cities have reached the break-even point and seven of the 51 target cities showed great improvement of the economic feasibility of solar PV systems in the U.S. due to excellent state solar incentives. The results of this study can help policy makers to evaluate and compare the economic impacts of the residential solar PV systems by state in the U.S.


2018 ◽  
Vol 1 (3) ◽  
Author(s):  
Atul Kumar1 ◽  
Srivastava Manish2

Electricity generation around the world is mainly produced by using non-renewable energy sources especially in the commercial buildings. However, Rooftop solar Photovoltaic (PV) system produced a significant impact on environmental and economical benefits in comparison to the conventional energy sources, thus contributing to sustainable development. Such PV’s system encourages the production of electricity without greenhouse gas emissions that leads to a clean alternative to fossil fuels and economic prosperity even in less developed areas. However, efficiency of rooftop solar PV systems depends on many factors, the dominant being geographical (latitude, longitude, and solar intensity), environmental (temperature, wind, humidity, pollution, dust, rain, etc.) and the type of PV (from raw material extraction and procurement, to manufacturing, disposal, and/or recycling) used. During the feasibility analysis of the environment, geographical conditions are keep in well consideration, but the pollution level of the city is always overlooked, which significantly influences the performance of the PV installations.           Therefore, this research work focused on the performance of rooftop solar PV installed in one of the most polluted city in India. Here, the loss in power generation of rooftop solar PV has been studied for the effect of deposited dust particles, wind velocity before and after the cleaning of the panels. The actual data has been utilized for the calculation of the energy efficiency and power output of the PV systems. According to the results, it has been concluded that dust deposition, wind speed and pollution level in city significantly reduces the efficiency of solar photovoltaic panel. Hence, an overview of social and environmental impacts of PV technologies is presented in this paper along with potential benefits and pitfalls.


2020 ◽  
pp. 174425912090624
Author(s):  
Shima Moolavi Sanzighi ◽  
Farzaneh Soflaei ◽  
Mehdi Shokouhian

This article focuses on evaluating thermal performance of different types of residential buildings in Mediterranean climate (Csa) of Iran. The aim is to identify the main design parameters in nine research cases, selected from three distinct periods of history with different architectural styles, and evaluating thermal performance of these buildings. To that end, a library study was carried out to identify the most influential passive design strategies and to highlight their impact on thermal comfort and energy efficiency of residential buildings. A field survey was conducted to determine the most common types of average-income houses in Csa climate of Gorgan, Iran, with a historical overview from 19th century to present. Nine buildings were selected to study from three different period of times including the years from 1850 to 1925, 1925 to 1979 and 1979 to present. A three-dimensional numerical model was developed to assess the impact of four main design parameters including orientation, geometrical properties, openings and materials on indoor thermal comfort for each case, using Design Builder commercial software package. The correlation between these design variables and thermal comfort was presented; the results reveal that the contemporary residential buildings are not designed as efficient as traditional houses in this area, in terms of passive energy saving techniques.


2020 ◽  
Vol 12 (3) ◽  
pp. 1091 ◽  
Author(s):  
Waqas Ahmed Mahar ◽  
Griet Verbeeck ◽  
Sigrid Reiter ◽  
Shady Attia

Buildings are significant drivers of greenhouse gas emissions and energy consumption. Improving the thermal comfort of occupants in free-running buildings and avoiding active and fossil fuel-based systems is the main challenge in many cities worldwide. However, the impacts of passive design measures on thermal comfort in cold semi-arid regions are seldom studied. With the rapid urbanization and the widespread use of personalised heating and cooling systems, there is a need to inform building designers and city authorities about passive design measures that can achieve nearly optimal conditions. Therefore, in this study, a global sensitivity analysis of the impact of passive design parameters on adaptive comfort in cold semi-arid climates was conducted. A representative residential building was simulated and calibrated in Quetta, Pakistan, to identify key design parameters for optimal thermal comfort. The results list and rank a set of passive design recommendations that can be used widely in similar climates. The results show that among the investigated 21 design variables, the insulation type of roof is the most influential design variable. Overall, the sensitivity analysis yielded new quantitative and qualitative knowledge about the passive design of buildings with personalised heating systems, but the used sensitivity analysis has some limitations. Finally, this study provides evidence-based and informed design recommendations that can serve architects and homeowners to integrate passive design measures at the earliest conceptual design phases in cold semi-arid climates.


Sign in / Sign up

Export Citation Format

Share Document