scholarly journals Long-Term Trial of Tillage Systems for Sugarcane: Effect on Topsoil Hydrophysical Attributes

2021 ◽  
Vol 13 (6) ◽  
pp. 3448
Author(s):  
Aline Fachin Martíni ◽  
Gustavo Pereira Valani ◽  
Laura Fernanda Simões da Silva ◽  
Denizart Bolonhezi ◽  
Simone Di Prima ◽  
...  

Seeking to provide essential information about sustainable tillage systems, this work aimed to assess the effects of liming and soil cultivation systems on the soil hydrophysical attributes of a long-term cultivated sugarcane field in the tropical region of southeast Brazil. Infiltration tests and soil sampling down to 0.10 m were performed in order to determine saturated soil hydraulic conductivity, soil bulk density, soil total porosity, macroporosity, microporosity, and soil resistance to penetration. The studied areas include no-tillage (NT) and conventional tillage (CT) systems with 0 (CT0 and NT0) and 4 (CT4 and NT4) Mg ha−1 of lime, and an adjoining area with native forest (NF). The data analysis included an analysis of variance followed by the Tukey test to compare different systems, assessment of the Pearson correlation coefficient between variables, and a principal component analysis of the dataset. The lowest bulk density and highest soil total porosity, macroporosity and saturated hydraulic conductivity were found in the NF. The bulk density in CT4 and NT0 was higher than in other systems, indicating the need for amelioration. NT4 is suggested as the most viable system for conservation agriculture in sugarcane fields, combining the benefits of no-tillage and liming to enhance soil hydrophysical functions.

2008 ◽  
Vol 32 (4) ◽  
pp. 1437-1446 ◽  
Author(s):  
Milton da Veiga ◽  
Dalvan José Reinert ◽  
José Miguel Reichert ◽  
Douglas Rodrigo Kaiser

Soil tillage promotes changes in soil structure. The magnitude of the changes varies with the nature of the soil, tillage system and soil water content and decreases over time after tillage. The objective of this study was to evaluate short-term (one year period) and long-term (nine year period) effects of soil tillage and nutrient sources on some physical properties of a very clayey Hapludox. Five tillage systems were evaluated: no-till (NT), chisel plow + one secondary disking (CP), primary + two (secondary) diskings (CT), CT with burning of crop residues (CTb), and CT with removal of crop residues from the field (CTr), in combination with five nutrient sources: control without nutrient application (C); mineral fertilizers, according to technical recommendations for each crop (MF); 5 Mg ha-1 yr-1 of poultry litter (wetmatter) (PL); 60 m³ ha-1 yr-1 of cattle slurry (CS) and; 40 m³ ha-1 yr-1 of swine slurry (SS). Bulk density (BD), total porosity (TP), and parameters related to the water retention curve (macroporosity, mesoporosity and microporosity) were determined after nine years and at five sampling dates during the tenth year of the experiment. Soil physical properties were tillage and time-dependent. Tilled treatments increased total porosity and macroporosity, and reduced bulk density in the surface layer (0.00-0.05 m), but this effect decreased over time after tillage operations due to natural soil reconsolidation, since no external stress was applied in this period. Changes in pore size distribution were more pronounced in larger and medium pore diameter classes. The bulk density was greatest in intermediate layers in all tillage treatments (0.05-0.10 and 0.12-0.17 m) and decreased down to the deepest layer (0.27-0.32 m), indicating a more compacted layer around 0.05-0.20 m. Nutrient sources did not significantly affect soil physical and hydraulic properties studied.


Author(s):  
João H. Caviglione

ABSTRACT From the 1990s, the demand for soil quality indicators has increased with the agricultural sustainability approaches. The S-index was proposed as an indicator of soil physical quality. The objective was to evaluate the sensitivity of S-index as an indicator of soil physical quality and its correlation with bulk density, organic carbon content, macroporosity, microporosity, total porosity and clay, sand and silt contents, under field conditions in the diversity of the Paraná state. Samples were collected from 21 sites with textures from clay and heavy clay, in the layers of 0-0.1 and 0.1-0.2 m, in soil under native forest and in cultivated soil. Eight soil physical attributes were determined. A soil-water retention curve with six moisture points was fitted and the S-index was calculated for each condition. The Wilcoxon Test showed differences in S-index between soil managements with p-value = 0.0015 in the 0-0.1 m layer and less than 0.0001 in the 0.1-0.2 m layer. The observed S-index showed to be a sensitive indicator of soil physical quality and with a significant Pearson correlation with bulk density (‑0.826), macroporosity (0.760), total porosity (0.836), and organic carbon content (0.583).


2002 ◽  
Vol 46 (6-7) ◽  
pp. 183-190 ◽  
Author(s):  
C.S. Tan ◽  
C.F. Drury ◽  
W.D. Reynolds ◽  
J.D. Gaynor ◽  
T.Q. Zhang ◽  
...  

No-tillage (NT) is becoming increasingly attractive to farmers because it clearly reduces soil erosion and production costs relative to conventional tillage (CT). However, the impacts of no-tillage on the quantity and quality of tile drainage water are less well known. Accordingly, two adjacent field scale on-farm CT and NT sites were established to compare the impacts of the two tillage systems on tile drainage and NO3-N loss in tile drainage water. The effect of the two tillage systems on soil structure, hydraulic conductivity, and earthworm population were also investigated. The total NO3-N loss in tile drainage water over the 5-yr period (1995-1999) was 82.3 kg N ha−1 for the long-term NT site and 63.7 kg N ha−1 for the long-term CT site. The long-term NT site had 48% more tile drainage (6,975 kL ha−1) than the long-term CT site (4,716 kL ha−1). The average flow weighted mean (FWM) NO3-N concentration in tile drainage water over the 5-yr period was 11.8 mg N L−1 for the NT site and 13.5 mg N L−1 for the CT site. For both tillage systems, approximately 80% of tile drainage and NO3-N loss in tile drainage water occurred during the November to April non-growing season. Long-term NT improved wet aggregate stability, increased near-surface hydraulic conductivity and increased both the number and mass of earthworms relative to long-term CT. The greater tile drainage and NO3-N loss under NT were attributed to an increase in continuous soil macropores, as implied by greater hydraulic conductivity and greater numbers of earthworms.


2018 ◽  
Vol 10 (11) ◽  
pp. 299
Author(s):  
Luciene Kazue Tokura ◽  
Deonir Secco ◽  
Luiz Antônio Zanão Júnior ◽  
Jair Antonio Cruz Siqueira ◽  
Samuel Nelson Melegari de Souza ◽  
...  

The objective of this work was to evaluate the effect of soil cover species and management systems in improving the physical characteristics of a Haplortox and its effects on grain yield and soybean oil content. The experimental area, consisted of 15 treatments in a completely randomized experimental design. Each plot had size of 20 × 25 m. The treatments consisted of: traditional no-tillage system (control), no-tillage system with application of gypsum, no-tillage with scarification and 12 treatments with cover species called soil structure reclaimers. Soil samples were collected in the layers of 0-0.10; 0.10-0.20 and 0.20-0.30 m, with four replicates. The physical attributes evaluated were bulk density, total porosity, microporosity, macroporosity and saturated hydraulic conductivity in the periods of 2014, 2015 and 2016. In the soybean crop the grain yield, oil content, weight of 100 grains, average height of plants and number of plants/m were evaluated in each treatment with four replications. The oil content was performed by the low-field nuclear magnetic resonance method. The averages of the treatments were compared by the Tukey test at 5% of significance. The results showed that five months after soil scarification did not affect bulk density. Eleven months after gypsum application discrete improvements in density, total porosity, microporosity and soil hydraulic conductivity occurred in the 0-0.10 and 0.10-0.20 m layers. It was also concluded that grain yield, oil content, weight of 100 grains and number of plants per meter were not influenced by the soil cover species and soil management systems.


Irriga ◽  
2003 ◽  
Vol 8 (3) ◽  
pp. 242-249 ◽  
Author(s):  
Amauri Nelson Beutler ◽  
José Frederico Centurion ◽  
Cassiano Garcia Roque ◽  
Zigomar Menezes de Souza

INFLUÊNCIA DA COMPACTAÇÃO E DO CULTIVO DE SOJA NOS ATRIBUTOS FÍSICOS E NA CONDUTIVIDADE HIDRÁULICA EM LATOSSOLO VERMELHO   Amauri Nelson BeutlerJosé Frederico CenturionCassiano Garcia RoqueZigomar Menezes de SouzaDepartamento de Solos e Adubos, Faculdade de Ciências Agrárias e Veterinárias, Universidade Estadual Paulista, Jaboticabal, SP. CEP 14870-000. E-mail: [email protected], [email protected]  1 RESUMO              Este estudo teve como objetivo determinar a influência da compactação e do cultivo de soja nos atributos físicos e na condutividade hidráulica de um Latossolo Vermelho de textura média. O experimento foi conduzido na Universidade Estadual Paulista – Faculdade de Ciências Agrárias e Veterinárias, Jaboticabal (SP). Os tratamentos foram: 0, 1, 2, 4 e 6 passadas de um trator, uma ao lado da outra perfazendo toda a superfície do solo, com quatro repetições. O delineamento experimental foi inteiramente casualizado para a condutividade hidráulica e, em esquema fatorial 5 x 2 para os atributos físicos. Foram coletadas amostras de solo nas faixas de profundidades de 0,02-0,05; 0,07-0,10 e 0,15-0,18 m, por ocasião da semeadura e após a colheita para determinação da densidade do solo, porosidade total, macro e microporosidade do solo. A condutividade hidráulica do solo foi determinada após a colheita. O tempo entre a semeadura e a colheita de soja foi suficiente para aumentar a compactação do solo apenas na condição de solo solto. A compactação do solo reduziu a condutividade hidráulica em relação a condição natural (mata) e a condição de solo solto, sendo que esta não foi reduzida, após a primeira passagem, com o aumento no número de passagens.  UNITERMOS: Densidade do solo, porosidade do solo, infiltração de água, soja.  BEUTLER, A. N.; CENTURION, J. F.; ROQUE, C. G.; SOUZA, Z. M. COMPACTION AND SOYBEAN GROW INFLUENCE ON PHYSICAL ATTRIBUTES AND  HYDRAULIC CONDUCTIVITY IN RED LATOSSOL SOIL   2 ABSTRACT  The purpose of this study was to determine the influence of compaction and soybean grow on physical attributes and hydraulic conductivity of a Red Latossol, medium texture soil. The experiment was carried out in the experimental farm at the Paulista State University  – Agricultural Science College, Jaboticabal – São Paulo state. The treatments were 0, 1, 2, 4 and 6 side-by-side tractor strides on the soil surface with four replications. The experimental design was completely randomized for hydraulic conductivity and a 5 x 2 factorial design for soil physical attributes. Soil samples have been collected at 0.02-0.05, 0.07-0.10 and 0.15-0.18 m depth at sowing season and after harvest in order to determine soil bulk density, total porosity, macro and micro porosity. Soil hydraulic conductivity was determined after harvest. The time period between the soybean sowing and harvesting was enough to increase soil compaction only in loose soil condition. Soil compaction reduced hydraulic conductivity compared to the natural (forest) and loose soil condition  KEYWORDS: Bulk density, soil porosity, water infiltration, soybean.


2018 ◽  
Vol 51 (1) ◽  
pp. 103
Author(s):  
Aleksandra Król ◽  
Tomasz Żyłowski ◽  
Jerzy Kozyra ◽  
Jerzy Księżak

2019 ◽  
Vol 194 ◽  
pp. 104316 ◽  
Author(s):  
Daiane dos Santos Soares ◽  
Maria Lucrecia Gerosa Ramos ◽  
Robélio Leandro Marchão ◽  
Giovana Alcântara Maciel ◽  
Alexsandra Duarte de Oliveira ◽  
...  

2009 ◽  
Vol 33 (5) ◽  
pp. 1237-1247 ◽  
Author(s):  
Sérgio Ely Valadão Gigante de Andrade Costa ◽  
Edicarlos Damaceno de Souza ◽  
Ibanor Anghinoni ◽  
João Paulo Cassol Flores ◽  
Eduardo Giacomelli Cao ◽  
...  

Soil and fertilizer management during cultivation can affect crop productivity and profitability. Long-term experiments are therefore necessary to determine the dynamics of nutrient and root distribution as related to soil profile, as well as the effects on nutrient uptake and crop growth. An 18-year experiment was conducted at the Federal University of Rio Grande do Sul State (UFRGS), in Eldorado do Sul, Brazil, on Rhodic Paleudult soil. Black oat and vetch were planted in the winter and corn in the summer. The soil management methods were conventional, involving no-tillage and strip tillage techniques and broadcast, row-and strip-applied fertilizer placement (triple superphosphate). Available P (Mehlich-1) and root distribution were determined in soil monoliths during the corn grain filling period. Corn shoot dry matter production and P accumulation during the 2006/2007 growing season were determined and the efficiency of P utilization calculated. Regardless of the degree of soil mobilization, P and roots were accumulated in the fertilized zone with time, mainly in the surface layer (0-10 cm). Root distribution followed P distribution for all tillage systems and fertilizer treatments. Under no-tillage, independent of the fertilizer placement, the corn plants developed more roots than in the other tillage systems. Although soil tillage systems and fertilizer treatments affected P and root distribution throughout the soil profile, as well as P absorption and corn growth, the efficiency of P utilization was not affected.


2015 ◽  
Vol 39 (2) ◽  
pp. 408-415 ◽  
Author(s):  
Carlos Germán Soracco ◽  
Luis Alberto Lozano ◽  
Rafael Villarreal ◽  
Telmo Cecilio Palancar ◽  
Daniel Jorajuria Collazo ◽  
...  

Soil compaction has been recognized as a severe problem in mechanized agriculture and has an influence on many soil properties and processes. Yet, there are few studies on the long-term effects of soil compaction, and the development of soil compaction has been shown through a limited number of soil parameters. The objectives of this study were to evaluate the persistence of soil compaction effects (three traffic treatments: T0, without traffic; T3, three tractor passes; and T5, five tractor passes) on pore system configuration, through static and dynamic determinations; and to determine changes in soil pore orientation due to soil compaction through measurement of hydraulic conductivity of saturated soil in samples taken vertically and horizontally. Traffic led to persistent changes in all the dynamic indicators studied (saturated hydraulic conductivity, K0; effective macro- and mesoporosity, εma and εme), with significantly lower values of K0, εma, and εme in the T5 treatment. The static indicators of bulk density (BD), derived total porosity (TP), and total macroporosity (θma) did not vary significantly among the treatments. This means that machine traffic did not produce persistent changes on these variables after two years. However, the orientation of the soil pore system was modified by traffic. Even in T0, there were greater changes in K0 measured in the samples taken vertically than horizontally, which was more related to the presence of vertical biopores, and to isotropy of K0 in the treatments with machine traffic. Overall, the results showed that dynamic indicators are more sensitive to the effects of compaction and that, in the future, static indicators should not be used as compaction indicators without being complemented by dynamic indicators.


2015 ◽  
Vol 29 (1) ◽  
pp. 101-106 ◽  
Author(s):  
A.A. Abd El-Halim ◽  
Arunsiri Kumlung

Abstract Until now sandy soils can be considered as one roup having common hydrophysical problems. Therefore, a laboratory experiment was conducted to evaluate the influence of bagasse as an amendment to improve hydrophysical properties of sandy soil, through the determination of bulk density, aggregatesize distribution, total porosity, hydraulic conductivity, pore-space structure and water retention. To fulfil this objective, sandy soils were amended with bagasse at the rate of 0, 0.5, 1, 2, 3 and 4% on the dry weight basis. The study results demonstrated that the addition of bagasse to sandy soils in between 3 to 4% on the dry weight basis led to a significant decrease in bulk density, hydraulic conductivity, and rapid-drainable pores, and increase in the total porosity, water-holding pores, fine capillary pores, water retained at field capacity, wilting point, and soil available water as compared with the control treatment


Sign in / Sign up

Export Citation Format

Share Document