scholarly journals Short and long-term effects of tillage systems and nutrient sources on soil physical properties of a Southern Brazilian Hapludox

2008 ◽  
Vol 32 (4) ◽  
pp. 1437-1446 ◽  
Author(s):  
Milton da Veiga ◽  
Dalvan José Reinert ◽  
José Miguel Reichert ◽  
Douglas Rodrigo Kaiser

Soil tillage promotes changes in soil structure. The magnitude of the changes varies with the nature of the soil, tillage system and soil water content and decreases over time after tillage. The objective of this study was to evaluate short-term (one year period) and long-term (nine year period) effects of soil tillage and nutrient sources on some physical properties of a very clayey Hapludox. Five tillage systems were evaluated: no-till (NT), chisel plow + one secondary disking (CP), primary + two (secondary) diskings (CT), CT with burning of crop residues (CTb), and CT with removal of crop residues from the field (CTr), in combination with five nutrient sources: control without nutrient application (C); mineral fertilizers, according to technical recommendations for each crop (MF); 5 Mg ha-1 yr-1 of poultry litter (wetmatter) (PL); 60 m³ ha-1 yr-1 of cattle slurry (CS) and; 40 m³ ha-1 yr-1 of swine slurry (SS). Bulk density (BD), total porosity (TP), and parameters related to the water retention curve (macroporosity, mesoporosity and microporosity) were determined after nine years and at five sampling dates during the tenth year of the experiment. Soil physical properties were tillage and time-dependent. Tilled treatments increased total porosity and macroporosity, and reduced bulk density in the surface layer (0.00-0.05 m), but this effect decreased over time after tillage operations due to natural soil reconsolidation, since no external stress was applied in this period. Changes in pore size distribution were more pronounced in larger and medium pore diameter classes. The bulk density was greatest in intermediate layers in all tillage treatments (0.05-0.10 and 0.12-0.17 m) and decreased down to the deepest layer (0.27-0.32 m), indicating a more compacted layer around 0.05-0.20 m. Nutrient sources did not significantly affect soil physical and hydraulic properties studied.

2020 ◽  
Vol 4 (2) ◽  
pp. 56-60
Author(s):  
Rana Shahzad Noor ◽  
Fiaz Hussain ◽  
Muhammad Umair

Tillage is a critical soil management option that affect many soil physical, chemical and biological properties, which in turn may alter the soil environment and consequently impact on root growth and distribution, and crop yield. This study was carried out to evaluate the long-term effects of different soil tillage systems on some soil physical properties under both irrigated and rainfed wheat productions for nine consecutive wheat seasons (2011-12 and 2019-20) at Koont research farm, PMAS-Arid Agriculture University, Rawalpindi. Four soil tillage systems were performed i.e. conventional tillage system (S1), reduced tillage system-1 (S2), reduced tillage system-2 (S3) and no tillage system (S4). The results showed that soil moisture content measured at both soil depths (0-15 and 15-30 cm) was the maximum in direct sowing (S4) and lowest in conventional soil tillage system (S1). Bulk density and porosity were changes with tillage depth. Among studied tillage systems, bulk density and penetration resistance values were the maximum and porosity was lowest in direct wheat sowing system. Soil particle size distribution was affected by operations and agricultural machinery used in soil tillage systems. The aggregate size smaller than 1 mm showed higher fragmentation (42.25%) in S3. This study showed that soil physical properties were influenced by tillage systems in wheat production under irrigation and rainfed environment. Although the climate of the study area is semi-arid and direct sowing system provide maximum moisture but reduced tillage method can be used for better soil physical properties and highest crop yield.


2021 ◽  
Author(s):  
Martin Zanutel ◽  
Sarah Garré ◽  
Charles Bielders

<p>In the context of global soil degradation, biochar is being promoted as a potential solution to improve soil quality, besides its carbon sequestration potential. Burying biochar in soils is known to effect soil physical quality in the short-term (<5 years), and the intensity of these effects depends on soil texture. However, the long-term effects of biochar remain largely unknown yet and are important to quantify given biochar’s persistency in soils. The objective of this study was therefore to assess the long-term effect of biochar on soil physical properties as a function of soil texture and biochar concentration.  For this purpose, soil physical properties (particle density, bulk density, porosity, water retention and hydraulic conductivity curves) were measured in the topsoil of three fields with former kiln sites containing charcoal more than 150 years old in Wallonia (southern Belgium).  The fields had a silt loam, loam and sandy loam texture.  Samples were collected along 3 transects in each field, from the center of the kiln sites outwards. </p><p>Particle density and bulk density slightly decreased as a function of charcoal content. Because particle density and bulk density were affected to a similar extent by charcoal content, total porosity was not affected by the presence of century-old charcoal. Regarding the soil water retention curve, charcoal affected mostly water content in the mesopore range. This effect was strongest for the sandy loam. On the other hand, the presence of century-old charcoal increased significantly the hydraulic conductivity at pF between 1.5 and 2 for the silt loam, while no effect of charcoal was observed for the loamy soil.  The study highlights a limited effect of century-old charcoal on the pore size distribution (at constant porosity) and on the resulting soil physical properties for the range of soils and charcoal concentrations investigated here.  Further research may be needed to confirm the observed trends over a wider range of soil types. </p>


2011 ◽  
Vol 6 (No. 2) ◽  
pp. 73-82 ◽  
Author(s):  
S.E. Obalum ◽  
J.C. Nwite ◽  
J. Oppong ◽  
C.A. Igwe ◽  
T. Wakatsuki

One peculiar feature of the inland valleys abundant in West Africa is their site-specific hydrology, underlain mainly by the prevailing landforms and topography. Development and management of these land resources under the increasingly popular sawah (a system of bunded, puddled and levelled rice field with facilities for irrigation and drainage) technology is a promising opportunity for enhancing rice (Oryza sativa L.) production in the region. Information on the variations in selected soil physical properties as influenced by the prevailing landforms may serve as a useful guide in site selection. This is of practical importance since majority of the inland valleys are potentially unsuitable for sawah development and most farmers in the region are of low technical level. Three landforms (river levee, elevated area and depressed area) were identified within a sawah field located in an inland valley at Ahafo Ano South District of Ghana. Each of these landforms was topsoil-sampled along on identified gradient (top, mid and bottom slope positions). Parameters determined included particle size distribution, bulk density, total porosity and field moisture content. The soil is predominantly clayey. There were no variations in the particle size distribution among the slope positions in the river levee. Overall, the river levee had lower silt content than the elevated and the depressed landforms. The bulk density, total porosity, and gravimetric moisture content indicated relative improvements only in the depressed area in the order, bottom &gt; mid &gt; top slope. Irrespective of slope position, the three landforms differed in these parameters in the order, depressed &gt; river levee &gt; elevated. The sand fraction impacted negatively on the silt fraction and bulk density of the soil, both of which controlled the soil moisture status. Despite the fairly low silt content of the soil, the silt fraction strongly influenced the gravimetric moisture content (R<sup>2</sup> = 0.80). So too did the soil bulk density on the gravimetric moisture content (R<sup>2</sup> = 0.90). It is concluded that: (1) since the landforms more prominently influenced the measured parameters than the slope positions, the former should take pre-eminence over the latter in soil suitability judgment; (2) with respect to moisture retention, variations in silt fraction and bulk density of this and other clayey inland-valley soils should be used as guide in site selection for sawah development.


2020 ◽  
pp. 1-10
Author(s):  
Iroegbu, Chidinma S ◽  
Asawalam, Damian O ◽  
O. A. Dada ◽  
J. E. Orji

Aim: To determine the effect of different rates of sawdust (SD) and poultry manure (PM) applied on some soil physical properties of acid sandy Ultisol, and some growth parameters and yield of cocoyam. Study Design: 2 x 5 factorial arrangement in a randomized complete block design replicated three times.  Place and Duration of Study: The experiment was conducted in Eastern farm of Michael Okpara University of Agriculture, Umudike during 2014 and 2015 planting seasons. Methodology: The treatments comprised of two manure sources at five levels each: sawdust (0, 2, 10, 15 and 20t/ha) and poultry manure (0, 2, 4, 6 and 8t/ha). The treatments were assigned randomly to the plots and incorporated into the soil two weeks before planting. Data were collected on plant height, number of leaves, leaf area, corms, cormels and total yield. Soil samples were collected with core samplers for physical properties such as Soil Bulk density and Total Porosity. All the data collected were subjected to ANOVA for factorial experiment in RCBD at 5% probability level. Results: The result showed that the interactions of poultry manure and sawdust significantly (p<0.05) improved soil bulk density and total porosity with the lowest value obtained with 0t/ha SD + 8t/ha PM in both 2014 and 2015. The result showed that the interactions of poultry manure and sawdust significantly (p<0.05) increased the leaf area with the highest value obtained with 20t/ha SD + 8t/ha PM in both 2014 and 2015. Also, only the increasing rates of treatment applied significantly (p<0.05) increased the number of leaves, plant height, leaf area and cocoyam yield with the highest value obtained with 20t/ha SD + 8t/ha PM. Also, the various rates of treatment application significantly (p<0.05) increased the cocoyam yield (weight of corms and cormels) with the highest value obtained with 20t/ha SD + 8t/ha PM. Conclusion: Improvement in growth and yield of cocoyam resulted from the improved nutrient status of the soil as a result of the amendments applied.


Forests ◽  
2019 ◽  
Vol 10 (11) ◽  
pp. 1034 ◽  
Author(s):  
Hadi Sohrabi ◽  
Meghdad Jourgholami ◽  
Farzam Tavankar ◽  
Rachele Venanzi ◽  
Rodolfo Picchio

Protection of forest soils during harvesting operations is necessary to reduce damage and accelerate recovery time. The current study aims to evaluate soil physical properties, natural regeneration, and its recovery process in treatments including slope gradient, traffic intensity and skid trail after long periods of time, after ceasing the timber harvesting operations. The most recent skidding operations within each 5 years recovery period were studied for a chronosequence of 20 years. Soil samples were taken in abandoned skid trails and data were recorded on naturally regenerated species and density. The results revealed that most soil disturbances occurred on the slopes >20%, as well as the highest levels of traffic intensity. Bulk density and penetration resistance were still higher than the control area, with a significant difference between them, while total porosity was partially recovered. Twenty years after the skidding operation, soil bulk density and penetration resistance were 13.2% and 23.7% higher than the control area, while total porosity was 9.78% lower the than value of the control area. Seedlings of 50–150 cm and >150 cm in height on skid trails had significantly lower density than those in the control. The number of seedlings per m2 was less than the control area in all skid trails and for all height classes. The proportion of seedlings present in low traffic intensity was higher than in medium and high traffic intensities. The findings confirmed that full recovery rates are lengthy, and more time than 20 years is required to fully recover, especially with regards to penetration resistance.


2011 ◽  
Vol 48 (No. 6) ◽  
pp. 249-254 ◽  
Author(s):  
S. Husnjak ◽  
D. Filipović ◽  
S. Košutić

An experiment with five different tillage systems and their influence on physical properties of a&nbsp;silty loam soil (Albic Luvisol) was carried in northwest Slavonia in the period of 1997&ndash;2000. The compared tillage systems were: 1. conventional tillage (CT), 2. reduced tillage (RT), 3. conservation tillage I&nbsp;(CP), 4. conservation tillage II (CM), 5. no-tillage system (NT). The crop rotation was soybean (Glycine max L.) &ndash; winter wheat (Triticum aestivum L.) &ndash; soybean &ndash; winter wheat. Differences between tillage systems in bulk density, total porosity, and water holding capacity and air capacity were not significant in winter wheat seasons. In soybean seasons, significant differences between some tillage systems were recorded in bulk density, total porosity, air capacity and soil moisture. The deterioration trend of physical properties was generally increasing in the order CM, CT, CP, NT and RT. The highest yield of soybean in the first experimental year was achieved under CT system and the lowest under CP system. In all other experimental years, the highest yield of winter wheat and soybean was achieved under CM system, while the lowest under RT system.


2021 ◽  
Vol 13 (6) ◽  
pp. 3448
Author(s):  
Aline Fachin Martíni ◽  
Gustavo Pereira Valani ◽  
Laura Fernanda Simões da Silva ◽  
Denizart Bolonhezi ◽  
Simone Di Prima ◽  
...  

Seeking to provide essential information about sustainable tillage systems, this work aimed to assess the effects of liming and soil cultivation systems on the soil hydrophysical attributes of a long-term cultivated sugarcane field in the tropical region of southeast Brazil. Infiltration tests and soil sampling down to 0.10 m were performed in order to determine saturated soil hydraulic conductivity, soil bulk density, soil total porosity, macroporosity, microporosity, and soil resistance to penetration. The studied areas include no-tillage (NT) and conventional tillage (CT) systems with 0 (CT0 and NT0) and 4 (CT4 and NT4) Mg ha−1 of lime, and an adjoining area with native forest (NF). The data analysis included an analysis of variance followed by the Tukey test to compare different systems, assessment of the Pearson correlation coefficient between variables, and a principal component analysis of the dataset. The lowest bulk density and highest soil total porosity, macroporosity and saturated hydraulic conductivity were found in the NF. The bulk density in CT4 and NT0 was higher than in other systems, indicating the need for amelioration. NT4 is suggested as the most viable system for conservation agriculture in sugarcane fields, combining the benefits of no-tillage and liming to enhance soil hydrophysical functions.


Soil Research ◽  
2017 ◽  
Vol 55 (4) ◽  
pp. 332 ◽  
Author(s):  
Johannes Lund Jensen ◽  
Per Schjønning ◽  
Bent T. Christensen ◽  
Lars Juhl Munkholm

Nutrient management affects not only crop productivity and environmental quality, but also soil physical properties related to soil tilth. Previous studies on soil physical properties have focussed on effects of fertiliser type, whereas the effect of fertiliser rate has been neglected. We examined the impact of no fertilisation (UNF) and different rates of mineral fertiliser (½NPK and 1NPK) and animal manure (1½AM) on an ensemble of soil physical characteristics, with the amount of fertiliser added at level 1 corresponding to the standard rate of plant nutrients for a given crop. Soil was from the Askov long-term field experiment, initiated in 1894 on a hard-setting sandy loam. We assessed clay dispersibility, wet-stability of aggregates, aggregate strength, bulk soil strength and soil pore characteristics. The soils receiving 1NPK and 1½AM had similar soil physical properties, the only differences being a wider range in the optimum water content for tillage and more plant-available water in the soil amended with 1½AM. Suboptimal fertiliser rates (UNF and ½NPK) increased clay dispersibility, soil cohesion and bulk density, and reduced aggregate stability. The physical properties of soils exposed to suboptimal fertilisation indicate that the level of soil organic matter, including active organic binding and bonding materials, has become critically low due to reduced inputs of crop residues. While long-term suboptimal fertilisation compromises soil physical properties, crop-yield-optimised rates of mineral fertilisers and animal manure appear to sustain several soil physical properties equally well.


1997 ◽  
Vol 77 (4) ◽  
pp. 677-683 ◽  
Author(s):  
L. Y. Salé ◽  
D. S. Chanasyk ◽  
M. A. Naeth

Fly ash, as a source of calcium, has potential for soil structure amendment. This potential was tested by examining the influence of fly ash on select soil physical properties of an easily clodded clay loam soil. Fly ash:soil mixtures were varied from 0 to 100% (vol/vol). Pots of these mixtures were placed into the soil of a reclaimed surface mine and sampled four times during a 15.5-mo period: upon mixing, after one summer, after one summer and a winter and after the second summer. Bulk density, dry aggregate size distribution, penetration resistance (PR) and modulus of rupture (MOR) were assessed on soils within the pots.Adding fly ash up to 25 to 50% generally increased bulk density; adding more decreased it. Bulk density decreased over time for most of the treatments. Adding 12.5 or 25% fly ash produced the greatest percentage of aggregates within the ideal range (0.5 to 4.0 mm). Blunt-end PR was a more sensitive parameter than cone resistance. Adding 25% fly ash resulted in lower MOR while maintaining a desirable level of aggregation, thus reducing cloddiness. In general most properties varied over time, indicating the need to consider the dynamic nature of them in reclamation. Key words: Fly ash, soil reclamation, bulk density, penetration resistance, particle size distribution


Sign in / Sign up

Export Citation Format

Share Document