scholarly journals Energy-Based Combined Nonlinear Observer and Voltage Controller for a PMSG Using Fuzzy Supervisor High Order Sliding Mode in a Marine Current Power System

2021 ◽  
Vol 13 (7) ◽  
pp. 3737
Author(s):  
Youcef Belkhier ◽  
Abdelyazid Achour ◽  
Rabindra Nath Shaw ◽  
Nasim Ullah ◽  
Md. Shahariar Chowdhury ◽  
...  

A permanent magnet synchronous generator (PMSG) in s grid-connected tidal energy conversion system presents numerous advantages such as high-power density and ease of maintenance. However, the nonlinear properties of the generator and parametric uncertainties make the controller design more than a simple challenge. Within this paper we present a new combined passivity-based voltage control (PBVC) with a nonlinear observer. The PBVC is used to design the desired dynamics of the system, while the nonlinear observer serves to reconstruct the measured signals. A high order sliding-mode based fuzzy supervisory approach is selected to design the desired dynamics. This paper addresses the following two main parts: controlling the PMSG to guarantee the maximum tidal power extraction and integrate into to the grid-side converter (GSC), for this the new controller is proposed. The second task is to regulate the generated reactive power and the DC-link voltage to their references under any disturbances related to the machine-side converter (MSC). Furthermore, the robustness of the controller against parameter changes was taken into consideration. The developed controller is tested under parameter variations and compared to benchmark nonlinear control methods. Numerical simulations are performed in MATLAB/Simulink which clearly demonstrates the robustness of the proposed technique over the compared control methods. Moreover, the proposed controller is also validated using a processor in the loop (PIL) experiment using Texas Instruments (TI) Launchpad.

Actuators ◽  
2021 ◽  
Vol 10 (5) ◽  
pp. 92
Author(s):  
Youcef Belkhier ◽  
Abdelyazid Achour ◽  
Rabindra Nath Shaw ◽  
Nasim Ullah ◽  
Md. Shahariar Chowdhury ◽  
...  

Higher efficiency, predictability, and high-power density are the main advantages of a permanent magnet synchronous generator (PMSG)-based hydro turbine. However, the control of a PMSG is a nontrivial issue, because of its time-varying parameters and nonlinear dynamics. This paper suggests a novel optimal fuzzy supervisor passivity-based high order sliding-mode controller to address problems faced by conventional techniques such as PI controls in the machine side. An inherent advantage of the proposed method is that the nonlinear terms are not canceled but compensated in a damped way. The proposed controller consists of two main parts: the fuzzy gain supervisor-PI controller to design the desired dynamic of the system by controlling the rotor speed, and the fuzzy gain-high order sliding-mode control to compute the controller law. The main objectives are feeding the electrical grid with active power, extracting the maximum tidal power, and regulating the reactive power and DC voltage toward their references, whatever the disturbances caused by the PMSG. The main contribution and novelty of the present work consists in the new robust fuzzy supervisory passivity-based high order sliding-mode controller, which treats the mechanical characteristics of the PMSG as a passive disturbance when designing the controller and compensates it. By doing so, the PMSG tracks the optimal speed, contrary to other controls which only take into account the electrical part. The combined high order sliding-mode controller (HSMC) and passivity-based control (PBC) resulted in a hybrid controller law which attempts to greatly enhance the robustness of the proposed approach regardless of various uncertainties. Moreover, the proposed controller was also validated using a processor in the loop (PIL) experiment using Texas Instruments (TI) Launchpad. The control strategy was tested under parameter variations and its performances were compared to the nonlinear control methods. High robustness and high efficiency were clearly illustrated by the proposed new strategy over compared methods under parameter uncertainties using MATLAB/Simulink and a PIL testing platform.


Author(s):  
Mohammed Moumna ◽  
Rachid Taleb ◽  
Zinelaabidine Boudjema

This paper aims to study the control of the output voltage of a wind turbine (WT) which is composed of a permanent magnet synchronous generator (PMSG) connected to an inverter/rectifier. The first tested control on PMSG is based on the classical direct power control (CDPC); this technique uses the active and reactive power as a control variable. Then, to improve the quality of energy and evaluate the performance of the system, we proposed a high-order sliding mode (HOSM) with space vector modulation (SVM) to controlthe output voltage. As a result, the proposed approach presents attractive features such as the chattering-free behavior of the sliding mode. This system was designed for a wind power conversion application in the case of an isolated site. The computer simulations were provided to verify the validity of the proposed control algorithm using the MATLAB/Simulink software.


Complexity ◽  
2020 ◽  
Vol 2020 ◽  
pp. 1-23 ◽  
Author(s):  
Guoqiang Zhu ◽  
Sen Wang ◽  
Lingfang Sun ◽  
Weichun Ge ◽  
Xiuyu Zhang

In this paper, a fuzzy adaptive output feedback dynamic surface sliding-mode control scheme is presented for a class of quadrotor unmanned aerial vehicles (UAVs). The framework of the controller design process is divided into two stages: the attitude control process and the position control process. The main features of this work are (1) a nonlinear observer is employed to predict the motion velocities of the quadrotor UAV; therefore, only the position signals are needed for the position tracking controller design; (2) by using the minimum learning technology, there is only one parameter which needs to be updated online at each design step and the computational burden can be greatly reduced; (3) a performance function is introduced to transform the tracking error into a new variable which can make the tracking error of the system satisfy the prescribed performance indicators; (4) the sliding-mode surface is introduced in the process of the controller design, and the robustness of the system is improved. Stability analysis proved that all signals of the closed-loop system are uniformly ultimately bounded. The results of the hardware-in-the-loop simulation validate the effectiveness of the proposed control scheme.


Complexity ◽  
2019 ◽  
Vol 2019 ◽  
pp. 1-15 ◽  
Author(s):  
Mojtaba Nasiri ◽  
Saleh Mobayen ◽  
Quan Min Zhu

In recent years, the complexities of wind turbine control are raised while implementing grid codes in voltage sag conditions. In fact, wind turbines should stay connected to the grid and inject reactive power according to the new grid codes. Accordingly, this paper presents a new control algorithm based on super-twisting sliding mode for a gearless wind turbine by a permanent magnet synchronous generator (PMSG). The PMSG is connected to the grid via the back-to-back converter. In the proposed method, the machine side converter regulates the DC-link voltage. This strategy improves low-voltage ride through (LVRT) capability. In addition, the grid side inverter provides the maximum power point tracking (MPPT) control. It should be noted that the super-twisting sliding mode (STSM) control is implemented to effectively deal with nonlinear relationship between DC-link voltage and the input control signal. The main features of the designed controller are being chattering-free and its robustness against external disturbances such as grid fault conditions. Simulations are performed on the MATLAB/Simulink platform. This controller is compared with Proportional-Integral (PI) and the first-order sliding mode (FOSM) controllers to illustrate the DC-link voltage regulation capability in the normal and grid fault conditions. Then, to show the MPPT implementation of the proposed controller, wind speed is changed with time. The simulation results show designed STSM controller better performance and robustness under different conditions.


2019 ◽  
Vol 16 (6) ◽  
pp. 725-736
Author(s):  
Shubhranshu Mohan Parida ◽  
Pravat Kumar Rout ◽  
Sanjeeb Kumar Kar

Purpose This study proposes a modified sliding mode control technique having a proportional plus integral (PI) sliding surface aided by auxiliary control applied to a wind turbine driven permanent magnet synchronous generator. This paper aims to realize real and reactive power control, keeping the voltage under the desired limit during transients. Design/methodology/approach First, a PI sliding surface type sliding mode control (PISMC) is formulated, which is capable of dragging the system to the desired state and stability. Then a saturation function-based auxiliary controller is incorporated with PISMC to enhance its performance during wind speed and system parameter variations. Findings The proposed controller can tackle the problems faced while using a PI controller and the conventional sliding mode controller (CSMC) such as lack of robustness and requirement of unnecessary large control signals to overcome the parametric uncertainties and problem of chattering. Originality/value To justify the superior performance of the proposed controller in terms of robustness, reliability and accuracy a comparative study is done with the CSMC and PI controllers. The simulations are performed using MATLAB.


2014 ◽  
Vol 25 (5) ◽  
pp. 848-858 ◽  
Author(s):  
Liang Wang ◽  
Yongzhi Sheng ◽  
Xiangdong Liu

Author(s):  
Ricardo Aguilar-López ◽  
Rafael Martínez-Guerra ◽  
Rafael Maya-Yescas

The main issue of this paper is the synthesis of a robust control law for regulation purposes, which is applied to a class of chemical reactor which exhibits highly nonlinear and oscillatory behavior. The considered methodology employs the typical structure of Proportional-Integral controllers, where the corresponding integral term is now proposed as an integral high order sliding-mode compensator, which deals with the intrinsic nonlinearities of the system to be regulated. A theoretical frame is provided to demonstrate that the proposed controller produces semi-global practical stability; performance of the proposed methodology is assessed via comparison with other controllers.


Author(s):  
Yesim Oniz ◽  
Erdal Kayacan ◽  
Okyay Kaynak

The main control objective of an Antilock Braking System (ABS) is to increase the tractive forces between wheel and road surface by keeping the wheel slip at the peak value of μ – λ curve. Conventionally, it is assumed that optimal wheel slip is constant. In this paper, a grey sliding mode controller is proposed to regulate optimal wheel slip depending on the vehicle forward velocity. ABS exhibits strongly nonlinear and uncertain characteristics. To overcome these difficulties, robust control methods should be employed. The concept of grey system theory, which has a certain prediction capability, offers an alternative approach to conventional control methods. The proposed controller anticipates the upcoming values of wheel slip and optimal wheel slip, and takes the necessary action to keep wheel slip at the desired value. The control algorithm is applied to a quarter vehicle model, and it is verified through simulations indicating fast convergence and good performance of the designed controller.


Sign in / Sign up

Export Citation Format

Share Document