scholarly journals Determining the Optimum Level of Soil Olsen Phosphorus and Phosphorus Fertilizer Application for High Phosphorus-Use Efficiency in Zea mays L. in Black Soil

2021 ◽  
Vol 13 (11) ◽  
pp. 5983
Author(s):  
Khalid Ibrahim ◽  
Qiong Wang ◽  
Le Wang ◽  
Weiwei Zhang ◽  
Chang Peng ◽  
...  

Phosphorus is an essential macronutrient, both as a component of several important plant structural compounds and as a catalyst in the conversion of numerous important biochemical reactions in plants. The soil Olsen P (OP) level is an important factor affecting crop production and P-use efficiency (PUE). We tested the effect of six OP levels and P doses on maize yield, where the P doses were 0, 22, 44, 59, 73, and 117 kg P2O5 ha−1, with three replications, from 2017 to 2019. The response of crop yield to the OP level can be divided into two parts, below 28 mg kg−1 and above 28 mg kg−1. The change point between the two parts was determined as the agronomic critical level for maize crops in the study area. The PUE (%) increased with soil OP levels and decreased with P fertilizer application rates. In addition, results for the low P application rate (P2), 22 kg P2O5 ha−1, showed that PUE significantly increased with an increase in the soil OP level compared with PUE at a low OP level (OP1), 0 kg P2O5 ha−1. The PUE value increased by 49.5%, 40.1%, and 32.4% at a high OP level (OP6) in 2017, 2018, and 2019, respectively, compared to that at a low OP level (OP1). At the same OP levels, in all three years, the PUE at a high P application rate (P6) decreased significantly, in the range of 62.8% to 78.7%, compared to that at a low P application rate (P2). Under an average deficit of 100 kg ha−1 P, the OP level of the soil in all three years decreased by 3.9 mg kg−1 in the treatment without P addition (P1) and increased by 2.4–3.5 mg kg−1 in the P treatments for each 100 kg ha−1 P surplus. A phosphorus application rate of 44 kg P2O5 ha−1 and an OP level of 28 mg kg−1 are sufficient to obtain an optimum yield, increase the PUE, and reduce environmental hazards in the study area in northeastern China.

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Aung Zaw Oo ◽  
Yasuhiro Tsujimoto ◽  
Mana Mukai ◽  
Tomohiro Nishigaki ◽  
Toshiyuki Takai ◽  
...  

AbstractImproved phosphorus (P) use efficiency for crop production is needed, given the depletion of phosphorus ore deposits, and increasing ecological concerns about its excessive use. Root system architecture (RSA) is important in efficiently capturing immobile P in soils, while agronomically, localized P application near the roots is a potential approach to address this issue. However, the interaction between genetic traits of RSA and localized P application has been little understood. Near-isogenic lines (NILs) and their parent of rice (qsor1-NIL, Dro1-NIL, and IR64, with shallow, deep, and intermediate root growth angles (RGA), respectively) were grown in flooded pots after placing P near the roots at transplanting (P-dipping). The experiment identified that the P-dipping created an available P hotspot at the plant base of the soil surface layer where the qsor1-NIL had the greatest root biomass and root surface area despite no genotyipic differences in total values, whereby the qsor1-NIL had significantly greater biomass and P uptake than the other genotypes in the P-dipping. The superior surface root development of qsor1-NIL could have facilitated P uptakes from the P hotspot, implying that P-use efficiency in crop production can be further increased by combining genetic traits of RSA and localized P application.


2021 ◽  
Author(s):  
Aung Zaw Oo ◽  
YASUHIRO TSUJIMOTO ◽  
Mana Mukai ◽  
Tomohiro Nishigaki ◽  
Toshiyuki Takai ◽  
...  

Abstract Improved phosphorus (P) use efficiency for crop production is needed given the depleting phosphorus ore deposits and increasing ecological concerns about its excessive use. Root system architecture (RSA) is important in efficiently capturing immobile P in soils, while agronomically, localized P application near the roots is a potential approach to address this issue. However, the interaction between genetic traits of RSA and localized P application has been little understood. Near-isogenic lines (NILs) and their parent of rice (qsor1-NIL, Dro1-NIL, and IR64, with shallow, deep, and intermediate root growth angles (RGA), respectively) were grown in flooded pots after placing P near the roots at transplanting (P-dipping). The experiment identified that the P-dipping created an available P hotspot at the soil surface; the qsor1-NIL had the greatest root biomass and root surface area in the 0–3 cm soil layer despite no genotype differences in total values; the qsor1-NIL had significantly greater biomass and P uptake than the other genotypes in the P-dipping. The superior surface root development of qsor1-NIL could have facilitated P uptakes from the P hotspot, implying that P-use efficiency in crop production can be further increased by combining genetic traits of RSA and localized P application.


2008 ◽  
Vol 15 (4) ◽  
pp. 423 ◽  
Author(s):  
I. SAARELA ◽  
H. HUHTA ◽  
P. VIRKAJÄRVI

In order to update fertilisation recommendations for Finnish silty and sandy soils, the effects of repeated phosphorus (P) fertilisation on the yields of cereals, grasses and other crops were measured at ten sites for 9 to 18 years. Results of some earlier studies were also used in examining the relationships of the yield responses to applied P and to the soil test values measured by the Finnish ammonium acetate method (PAc). Significant effects of P fertilisation were observed at all sites that had low or medium PAc values; in the case of potatoes, even at sites with fairly high values. The mean relative yield without applied P divided by yield with 60 or 45 kg P ha-1 of the ten sites was 81% (mean PAc 11.6 mg dm-3) varying from 55% at the PAc value of 4.7 mg dm-3 to 100% at the highest PAc values. In order to achieve a relative yield of 97%, which is considered the optimum for cereals and leys, the required mean annual application of P in the later parts of the experiments was 25 kg ha-1 (variation 0-42 kg ha-1). On the six soils that had low or medium PAc values (4.5-9.1 mg dm-3, mean 8.0 mg dm-3), relative yield was 97% at the P application rate of 35 kg ha-1 (variation 22-42 kg ha-1), while 11 kg P ha-1 (variation 0-25 kg ha-1) sufficed on the four soils that had higher PAc values (mean 20.8 mg dm-3, variation 11.7-35.2 mg dm-3). Reasons for the poor availability of P in silty and sandy soils were discussed.;


2014 ◽  
Vol 50 (4) ◽  
pp. 549-572 ◽  
Author(s):  
V. S. RATHORE ◽  
N. S. NATHAWAT ◽  
B. MEEL ◽  
B. M. YADAV ◽  
J. P. SINGH

SUMMARYThe choice of an appropriate cropping system is critical to maintaining or enhancing agricultural sustainability. Yield, profitability and water use efficiency are important factors for determining suitability of cropping systems in hot arid region. In a two-year field experiment (2009/10–2010/11) on loam sandy soils of Bikaner, India, the production potential, profitability and water use efficiency (WUE) of five cropping systems (groundnut–wheat, groundnut–isabgol, groundnut–chickpea, cluster bean–wheat and mung bean–wheat) each at six nutrient application rate (NAR) i.e. 0, 25, 50, 75, 100% recommended dose of N and P (NP) and 100% NP + S were evaluated. The cropping systems varied significantly in terms of productivity, profitability and WUEs. Averaged across nutrient application regimes, groundnut–wheat rotation gave 300–1620 kg ha−1 and 957–3365 kg ha−1 higher grain and biomass yields, respectively, than other cropping systems. The mean annual net returns were highest for the mung bean–wheat system, which returned 32–57% higher net return than other cropping systems. The mung bean–wheat and cluster bean–wheat systems had higher WUE in terms of yields than other cropping systems. The mung bean–wheat system recorded 35–63% higher WUE in monetary terms compared with other systems. Nutrients application improved yields, profit and WUEs of cropping systems. Averaged across years and cropping systems, the application of 100% NP improved grain yields, returns and WUE by 1.7, 3.9 and 1.6 times than no application of nutrients. The results suggest that the profitability and WUEs of crop production in this hot arid environment can be improved, compared with groundnut–wheat cropping, by substituting groundnut by mung bean and nutrients application.


2021 ◽  
Vol 31 (1) ◽  
pp. 45-50
Author(s):  
A. T. Omokanye ◽  
J. T. Amodu ◽  
S. O. Onifade

Forage, seed yields and herbage chemical composition of phasey bean Macroptilium lathyroides) were investigated at 3 intra-row plant spacings (15, 30 and 45cm between plants; 50 cm between roms), 4 phosphorus (P) fertilizer application rates (O), 50, 100 and 750 kg/ha P) and 5 harvest stages (uncut control, 6, 9, 12 and 15 weeks post sowing) in two growing seasons at Shika in northern Nigeria. The least intra-row plant spacing (15cm) produced higher (p<0.01) total DM vield (1.50 t/ha) than wider spacings. The proportion of leaf was least (40 %) in the widest spacing compared with other spacings (59-62 %). The P-fertilized plots produced 58-60% more total DM vields than the unfertilized plots and total DM yields increased with advanced plant growth. The highest percentage (61-63) of leaf was recorded from 6 to 12 weeks post sowing. Nitrogen level in herbage increased (p<0.05) with increased intra-row plant spacing and P application. Phosphorus and Calcium. Levels in herbage did not respond to intra-row plant spacing but increased with P application. The Ca:P ratios at the harvest stages were between 1:1 and 6:1. The highest seed yields (198 and 188 kg/ha) were recorded respectiely in the least intra-row plant spacing and the application of 100 kg Piha. Supplementation of calves on grasses/cereal stovers with phasey bean hay in a sustainable crop livestock production systems is suggested.


2001 ◽  
Vol 1 (1) ◽  
pp. 49-50 ◽  
Author(s):  
Khair Mohammad Kakar ◽  
Muhammad Tariq . ◽  
Fazal Hayat Taj . ◽  
Khalid Nawab .

2020 ◽  
Vol 12 (10) ◽  
pp. 4125 ◽  
Author(s):  
Qiang Liu ◽  
Hongwei Xu ◽  
Xingmin Mu ◽  
Guangju Zhao ◽  
Peng Gao ◽  
...  

Soil water and nutrients are major factors limiting crop productivity. In the present study, soil water use efficiency (WUE) and crop yield of millet and soybean were investigated under nine fertilization regimes (no nitrogen (N) and no phosphorus (P) (CK), 120 kg ha−1 N and no P (N1P0), 240 kg ha−1 N and no P (N2P0), 45 kg ha−1 P and no N (N0P1), 90 kg ha−1 P and no N (N0P2), 120 kg ha−1 N and 45 kg ha−1 P (N1P1), 240 kg ha−1 N and 45 kg ha−1 P (N2P1), 120 kg ha−1 N and 90 kg ha−1 P (N1P2), 240 kg ha−1 N and 90 kg ha−1 P (N2P2)) in the Loess Plateau, China. We conducted fertilization experiments in two cultivation seasons and collected soil nutrient, water use, and crop yield data. Combined N and P fertilization resulted in the greatest increase in crop yield and WUE, followed by the single P fertilizer application, and single N fertilizer application. The control treatment, which consisted of neither P nor N fertilizer application, had the least effect on crop yield. The combined N and P fertilization increased soil organic matter (SOM) and soil total N, while soil water consumption increased in all treatments. SOM and total N content increased significantly when compared to the control conditions, by 27.1–81.3%, and 301.3–669.2%, respectively, only under combined N and P application. The combined N and P application promoted the formation of a favorable soil aggregate structure and improved soil microbial activity, which accelerated fertilizer use, and enhanced the capacity of soil to maintain fertilizer supply. Crop yield increased significantly in all treatments when compared to the control conditions, with soybean and millet yields increasing by 82.5–560.1% and 55–490.8%, respectively. The combined application of N and P fertilizers increased soil water consumption, improved soil WUE, and satisfied crop growth and development requirements. In addition, soil WUE was significantly positively correlated with crop yield. Our results provide a scientific basis for rational crop fertilization in semi-arid areas on the Loess Plateau.


2019 ◽  
Vol 11 (17) ◽  
pp. 4799
Author(s):  
Wenting Jiang ◽  
Xiaohu Liu ◽  
Xiukang Wang ◽  
Lihui Yang ◽  
Yuan Yin

Optimizing the phosphorus (P) application rate can increase grain yield while reducing both cost and environmental impact. However, optimal P rates vary substantially when different targets such as maximum yield or maximum economic benefit are considered. The present study used field experiment conducted at 36 experiments sites for maize to determine the impact of P application levels on grain yield, plant P uptake, and P agronomy efficiency (AEP), P-derived yield benefits and private profitability, and to evaluated the agronomically (AOPR), privately (POPR), and economically (EOPR) optimal P rate at a regional scale. Four treatments were compared: No P fertilizer (P0); P rate of 45–60 kg ha−1 (LP); P rate of 90–120 kg ha−1 (MP); P rate of 135–180 kg ha−1 (HP). P application more effectively increased grain yield, reaching a peak at MP treatment. The plant P uptake in HP treatment was 37.4% higher than that in P0. The relationship between P uptake by plants (y) and P application rate (x) can be described by the equation y = −0.0003x2 + 0.1266x + 31.1 (R2 = 0.309, p < 0.01). Furthermore, grain yield (y) and plant P uptake (x) across all treatments also showed a significant polynomial function (R2 = 0.787–0.846). The MP treatment led to highest improvements in P agronomic efficiency (AEP), P-derived yield benefits (BY) and private profitability (BP) compared with those in other treatments. In addition, the average agronomically (AOPR), privately (POPR), and economically optimal P rate (EOPR) in 36 experimental sites were suggested as 127.9 kg ha−1, 110.8 kg ha−1, and 114.4 kg ha−1, which ranged from 80.6 to 211.3 kg ha−1, 78.2 to 181.8 kg ha−1, and 82.6 to 151.6 kg ha−1, respectively. Economically optimal P application (EOPR) can be recommended, because EOPR significantly reduced P application compared with AOPR, and average economically optimal yield was slightly higher compared with the average yield in the MP treatment. This study was conducive in providing a more productive, use-effective, profitable, environment-friendly P fertilizer management strategy for supporting maximized production potential and environment sustainable development.


Agronomy ◽  
2020 ◽  
Vol 10 (11) ◽  
pp. 1716
Author(s):  
Wei Zhang ◽  
Chunqin Zou ◽  
Xiuxiu Chen ◽  
Yumin Liu ◽  
Dunyi Liu ◽  
...  

Copper (Cu) and iron (Fe) are essential micronutrients for plants and animals. How phosphorus (P) application affects Cu and Fe concentrations in maize grain still remains unclear. Two-year field studies were conducted in a long-term experiment with six P levels (0, 12.5, 25, 50, 100, and 200 kg∙ha−1 P) on calcareous soil. Phosphorus application significantly decreased the average grain Cu concentration by 12.6% compared to no P treatment, but had no effect on grain Fe concentration. The copper content increased as the P application rate increased from 0 to 25 or 50 kg·ha−1, but then decreased, while Fe content kept increasing. As the P application rate increased, the specific Cu uptake by the roots decreased, but not for Fe. The root length density in response to P application had a positive relationship with shoot Cu and Fe content. The shoot Cu content and grain Cu concentration decreased with the reduction in the arbuscular mycorrhizal fungi (AMF) colonization of roots due to increasing P application. The reduction in grain Cu concentration with increasing P rates could be partly explained by the decreasing uptake efficiency.


Sign in / Sign up

Export Citation Format

Share Document