scholarly journals Sustainable and Stable Clay Sand Liners over Time

2021 ◽  
Vol 13 (14) ◽  
pp. 7840
Author(s):  
Ahmed M. Al-Mahbashi ◽  
Muawia Dafalla ◽  
Abdullah Shaker ◽  
Mosleh A. Al-Shamrani

The washout of fine materials from liners consisting of clay–sand mixtures is expected to influence the hydraulic conductivity. Clay sand liners must be assessed for efficiency when initially subjected to flood or standing water as the wetting under a hydraulic gradient can cause fine material to move and migrate away from the mixture. During wetting and drying complex expansion and shrinkage, changes take place. These changes affect the hydraulic conductivity and are likely to go out of the design range set out for the facility. The research covers the behavior of two clay sand liners tested over an extended time. The hydraulic conductivity measured under a specific hydraulic gradient was measured continuously following the establishment of the test set-up. Self-recording sensors were used to measure the temperature during the tests. The results indicated that the hydraulic conductivity reduces after an initial period of increase and fluctuation caused by the loss of mass because of fine material migration and swelling initiated due to the high content of smectite minerals. The testing and monitoring continued for more than 400 days. The permanent reduction in the hydraulic conductivity occurs after the initial period of repeated rise and fall. The extent of the initial period for the two tested mixtures is subject to the fine content mass and the clay mineralogy. The continuous reduction in the hydraulic conductivity after the initial period is due to the rearrangement of particles and compression in the sand–clay mixture.

2021 ◽  
Author(s):  
Liang Chen ◽  
Yu Wan ◽  
Jian-Jian He ◽  
Chun-Mu Luo ◽  
Shu-fa Yan ◽  
...  

Abstract Seepage-induced piping erosion is observed in many geotechnical structures. This paper studies the piping mechanism of gap-graded soils during the whole piping erosion failure process under a supercritical hydraulic gradient. We define the supercritical ratio Ri and study the change in the parameters such as the flow velocity, hydraulic conductivity, and fine particle loss with Ri. Under steady flow, a formula for determining the flow velocity state of the sample with Ri according to the fine particle content and relative density of the sample was proposed; during the piping failure process, the influence of Rimax on the rate at which the flow velocity and hydraulic conductivity of the sample increase as Ri decreases was greater than that of the initial relative density and the initial fine particle content of the sample. Under unsteady flow, a larger initial relative density corresponds to a smaller amplitude of increase in the average value of the peak flow velocity with increasing Ri. Compared with the test under steady flow, the flow velocity under unsteady flow would experience abrupt changes. The relative position of the trend line L of the flow velocity varying with Ri under unsteady flow and the fixed peak water head height point A under steady flow were related to the relative density of the sample.


Minerals ◽  
2020 ◽  
Vol 10 (12) ◽  
pp. 1064
Author(s):  
Masanori Kohno

Considering the relevance of clay mineral-bearing geomaterials in landslide/mass movement hazard assessment, various engineering projects for resource development, and stability evaluation of underground space utilization, it is important to understand the permeability of these clay mineral-based geomaterials. However, only a few quantitative data have been reported to date regarding the effects of the clay mineral type and hydraulic gradient on the permeability of clay mineral materials. This study was conducted to investigate the permeability of clay mineral materials based on the clay mineral type, under different hydraulic gradient conditions, through a constant-pressure permeability test. Comparative tests have revealed that the difference in the types of clay mineral influences the swelling pressure and hydraulic conductivity. In addition, it has been found that the difference in water pressure (hydraulic gradient) affects the hydraulic conductivity of clay mineral materials. The hydraulic conductivity has been found to be closely associated with the specific surface area of the clay mineral material. Furthermore, the hydraulic conductivity value measured is almost consistent with the value calculated theoretically using the Kozeny–Carman equation. Moreover, the hydraulic conductivity is also found to be closely associated with the hydrogen energy, calculated from the consistency index of clay. This result suggests that the hydraulic conductivity of clay mineral materials can be estimated based on the specific surface area and void ratio, or consistency index of clay.


2017 ◽  
Vol 54 (8) ◽  
pp. 1118-1138 ◽  
Author(s):  
R.K. Rowe ◽  
R.W.I. Brachman ◽  
M.S. Hosney ◽  
W.A. Take ◽  
D.N. Arnepalli

Four geosynthetic clay liners (GCLs) serving as single liners were exhumed from below 0.7 m of silty sand on a 3:1 (horizontal:vertical) north-facing slope at the QUELTS site in Godfrey, Ontario, after 5 and 7 years. The 300 mm GCL overlaps with 0.4 kg/m supplemental bentonite were all physically intact. The exchangeable bound sodium was completely replaced with divalent cations. The GCL with the smallest needle-punched bundle size (average of 0.7 mm) and percentage area covered by bundles (4%) maintained low hydraulic conductivity (k) when tested under 0.07–1.2 m head with 10 mmol/L CaCl2 solution as the permeant. For GCLs with larger bundles (1.1–1.6 mm) and higher percentage area covered by bundles (9%–14%), k was low when the head was low (0.07 m). Once the applied head increased, k increased by 1–4 orders of magnitude depending on the (i) hydraulic gradient, (ii) size and number of the needle-punched bundles, and (iii) structure and mass of the bentonite per unit area. The results suggest that the GCLs can perform effectively as a single hydraulic barrier in covers providing that the head above the GCL is kept low (e.g., by a suitable drainage layer above the GCL).


2021 ◽  
Author(s):  
Erwin Don Racasa ◽  
Bernd Lennartz ◽  
Miriam Ibenthal ◽  
Manon Janssen

<p>Submarine groundwater discharge (SGD) is an important pathway for water and compounds within the land-ocean transition zone that can impact coastal environments and marine life. Although SGD research from sandy shorelines has rapidly advanced in recent years, there is very little understanding of coastal areas dominated by coastal peatlands, where the prevailing soils are characterized by a low hydraulic conductivity. Peatlands, the world’s most efficient carbon storage, could be a potential source of carbon, nutrients, and trace metals via the SGD pathway. The objective of this study was to determine the magnitude and location of SGD in a coastal peatland in northeast Germany. We wanted to understand the factors controlling terrestrial SGD from coastal peatlands through numerical modelling employing the HYDRUS-2D modeling package. Steady-state scenarios were simulated based on soil physical properties, hydraulic heads, and geological stratifications and structure. In the model set-up, emphasis was laid upon peat layers extending from land into the sea. Our results show that terrestrial SGD occurs at a net discharge volume flux of 0.0803 m<sup>3</sup> m<sup>-1</sup> d<sup>-1</sup> with seepage rates of 1.05 cm d<sup>-1 </sup>near the shore and 0.16 cm d<sup>-1 </sup>at a second discharge region above the submerged peat layer. Calculated seepage rates compare to observations from other SGD sites in the Baltic Sea region and other wetland environments. The upscaled SGD estimate for the 3-km coastal peatland is 240 m<sup>3</sup> d<sup>-1</sup>, which is in correspondence to earlier estimates from the same site. Analysis of the model output reveals that magnitude and location of terrestrial SGD are mainly driven by the magnitude of hydraulic gradient and the hydraulic conductivity of both peat and mineral soils. Additional influencing factors are peat anisotropy, thickness of aquifer sands and peat layers, and peat elevation. Submerged peat layers extending into the sea can restrict SGD flow in deeper discharge regions but may be less critical in terms of volume flux as most SGD occurs near the shoreline. We conclude that coastal peatlands could be an essential source of carbon, nutrients, and other compounds via SGD and may influence local geochemistry budgets and marine ecosystems.</p>


Author(s):  
William G. Gray ◽  
Michael A. Celia

The mathematical study of flow in porous media is typically based on the 1856 empirical result of Henri Darcy. This result, known as Darcy’s law, states that the velocity of a single-phase flow through a porous medium is proportional to the hydraulic gradient. The publication of Darcy’s work has been referred to as “the birth of groundwater hydrology as a quantitative science” (Freeze and Cherry, 1979). Although Darcy’s original equation was found to be valid for slow, steady, one-dimensional, single-phase flow through a homogeneous and isotropic sand, it has been applied in the succeeding 140 years to complex transient flows that involve multiple phases in heterogeneous media. To attain this generality, a modification has been made to the original formula, such that the constant of proportionality between flow and hydraulic gradient is allowed to be a spatially varying function of the system properties. The extended version of Darcy’s law is expressed in the following form: qα=-Kα . Jα (2.1) where qα is the volumetric flow rate per unit area vector of the α-phase fluid, Kα is the hydraulic conductivity tensor of the α-phase and is a function of the viscosity and saturation of the α-phase and of the solid matrix, and Jα is the vector hydraulic gradient that drives the flow. The quantities Jα and Kα account for pressure and gravitational effects as well as the interactions that occur between adjacent phases. Although this generalization is occasionally criticized for its shortcomings, equation (2.1) is considered today to be a fundamental principle in analysis of porous media flows (e.g., McWhorter and Sunada, 1977). If, indeed, Darcy’s experimental result is the birth of quantitative hydrology, a need still remains to build quantitative analysis of porous media flow on a strong theoretical foundation. The problem of unsaturated flow of water has been attacked using experimental and theoretical tools since the early part of this century. Sposito (1986) attributes the beginnings of the study of soil water flow as a subdiscipline of physics to the fundamental work of Buckingham (1907), which uses a saturation-dependent hydraulic conductivity and a capillary potential for the hydraulic gradient.


2003 ◽  
Vol 119 (9) ◽  
pp. 587-592 ◽  
Author(s):  
Tai SASAKI ◽  
Kunio WATANABE ◽  
Weiren LIN ◽  
Shinichi HOSOYA

2018 ◽  
Vol 22 (4) ◽  
pp. 239-249 ◽  
Author(s):  
William Mario Fuentes ◽  
Carolina Hurtado ◽  
Carlos Lascarro

Sand-clay mixtures are one of the most usual types of soils in geotechnical engineering. These soils present a hydraulic conductivity which highly depends on the fine content. In this work, it will be shown, that not only the mean fine content of a soil sample affects its hydraulic conductivity, but also its spatial distribution within the sample. For this purpose, a set of hydraulic conductivity tests with sand-clay mixtures have been conducted to propose an empirical relation of the hydraulic conductivity depending on the fine content. Then, a numerical model of a large scaled hydraulic conductivity test is constructed. In this model, the heterogeneity of the fine content is simulated following a Gaussian distribution. The equivalent hydraulic conductivity resulting of the whole model is then computed and the influence of the spatial distribution of the fine content is evaluated. The results indicate that the hydraulic conductivity is not only related to the mean fine content, but also on its heterogeneity.


Sign in / Sign up

Export Citation Format

Share Document