scholarly journals Performance Evaluation of a Prestressed Belitic Calcium Sulfoaluminate Cement (BCSA) Concrete Bridge Girder

2021 ◽  
Vol 13 (14) ◽  
pp. 7875
Author(s):  
Nick Markosian ◽  
Raed Tawadrous ◽  
Mohammad Mastali ◽  
Robert J. Thomas ◽  
Marc Maguire

Belitic calcium sulfoaluminate (BCSA) cement is a sustainable alternative to Portland cement that offers rapid setting characteristics that could accelerate throughput in precast concrete operations. BCSA cements have lower carbon footprint, embodied energy, and natural resource consumption than Portland cement. However, these benefits are not often utilized in structural members due to lack of specifications and perceived logistical challenges. This paper evaluates the performance of a full-scale precast, prestressed voided deck slab bridge girder made with BCSA cement concrete. The rapid-set properties of BCSA cement allowed the initial concrete compressive strength to reach the required 4300 psi release strength at 6.5 h after casting. Prestress losses were monitored long-term using vibrating wire strain gages cast into the concrete at the level of the prestressing strands and the data were compared to the American Association of State Highway and Transportation Officials Load and Resistance Factor Design (AASHTO LRFD) predicted prestress losses. AASHTO methods for prestress loss calculation were overestimated compared to the vibrating wire strain gage data. Material testing was performed to quantify material properties including compressive strength, tensile strength, static and dynamic elastic modulus, creep, and drying and autogenous shrinkage. The material testing results were compared to AASHTO predictions for creep and shrinkage losses. The bridge girder was tested at mid-span and at a distance of 1.25 times the depth of the beam (1.25d) from the face of the support until failure. Mid-span testing consisted of a crack reopening test to solve for the effective prestress in the girder and a flexural test until failure. The crack reopen effective prestress was compared to the AASHTO prediction and AASHTO appeared to be effective in predicting losses based on the crack reopen data. The mid-span failure was a shear failure, well predicted by AASHTO LRFD. The 1.25d test resulted in a bond failure, but nearly developed based on a moment curvature estimate indicating the AASHTO bond model was conservative.

PCI Journal ◽  
2021 ◽  
Vol 66 (3) ◽  
pp. 32-48
Author(s):  
Ahmed Almohammedi ◽  
Cameron D. Murray ◽  
Canh N. Dang ◽  
W. Micah Hale

Inaccurate prediction of prestress losses leads to inaccurate predictions for camber, deflection, and concrete stresses in a bridge girder. This study aims to improve the prediction of prestress losses and provides bridge designers with insights into the differences between design and actual concrete properties. Prestress losses, compressive strength, modulus of elasticity, shrinkage, and creep were measured for several American Association of State Highway and Transportation Officials (AASHTO) Types II, III, IV, and VI girders. The investigation revealed that the measured total prestress losses at the time of deck placement were lower than the design losses calculated using the refined estimates method of the 2017 AASHTO LRFD Bridge Design Specifications. This was mainly attributed to the actual concrete compressive strength at transfer being greater than the design compressive strength. This discrepancy was as high as 73% for some girders. It was also determined that the 2017 AASHTO LRFD specifications’ refined estimates method for estimating prestress losses overestimates the total prestress losses at the time of deck placement for AASHTO Types II and III girders.


2021 ◽  
Vol 6 (4) ◽  
pp. 60
Author(s):  
Tiago Trigo ◽  
Inês Flores-Colen ◽  
Luís Silva ◽  
Nuno Vieira ◽  
Ana Raimundo ◽  
...  

The production of Portland cement (OP) is commonly associated to significant level of energy consumption and gas emissions. The use of calcium sulfoaluminate cement (CSA) can be a sustainable alternative binder, since its production releases about half of the CO2 emissions and its clinker requires 200 °C lower temperatures, when compared to OP. Furthermore, CSA has fast setting time and achieves higher strength in shorter periods, as well as reduced shrinkage. This paper discusses the incorporation of CSA in rendering mortars and basecoat mortars for ETICS (External Thermal Insulation Composite Systems). The physical-mechanical properties of mortars made with OP and CSA cements were experimental evaluated. The results showed that the introduction of CSA generally improves shrinkage, compressive strength, water absorption at low pressure, enhances the tensile bending strength and decreases the setting time. The amount of CSA introduced into the mixture significantly affected the properties of the cement matrix.


2018 ◽  
Vol 17 (9) ◽  
pp. 2023-2030
Author(s):  
Arnon Chaipanich ◽  
Chalermphan Narattha ◽  
Watcharapong Wongkeo ◽  
Pailyn Thongsanitgarn

2021 ◽  
pp. 100182
Author(s):  
Alberto Muciño ◽  
Lauro Bucio ◽  
Eligio Orozco ◽  
Sofía Vargas ◽  
Nora A. Pérez

Molecules ◽  
2021 ◽  
Vol 26 (8) ◽  
pp. 2136
Author(s):  
Shaokang Zhang ◽  
Ru Wang ◽  
Linglin Xu ◽  
Andreas Hecker ◽  
Horst-Michael Ludwig ◽  
...  

This paper studies the influence of hydroxyethyl methyl cellulose (HEMC) on the properties of calcium sulfoaluminate (CSA) cement mortar. In order to explore the applicability of different HEMCs in CSA cement mortars, HEMCs with higher and lower molar substitution (MS)/degree of substitution (DS) and polyacrylamide (PAAm) modification were used. At the same time, two kinds of CSA cements with different contents of ye’elimite were selected. Properties of cement mortar in fresh and hardened states were investigated, including the fluidity, consistency and water-retention rate of fresh mortar and the compressive strength, flexural strength, tensile bond strength and dry shrinkage rate of hardened mortar. The porosity and pore size distribution were also analyzed by mercury intrusion porosimetry (MIP). Results show that HEMCs improve the fresh state properties and tensile bond strength of both types of CSA cement mortars. However, the compressive strength of CSA cement mortars is greatly decreased by the addition of HEMCs, and the flexural strength is decreased slightly. The MIP measurement shows that HEMCs increase the amount of micron-level pores and the porosity. The HEMCs with different MS/DS have different effects on the improvement of tensile bond strength in different CSA cement mortars. PAAm modification can improve the tensile bond strength of HEMC-modified CSA cement mortar.


2020 ◽  
Vol 1 ◽  
Author(s):  
Mohammed A. Hefni

Abstract The use of natural pozzolans in concrete applications is gaining more attention because of the associated environmental, economic, and technical benefits. In this study, reference cemented mine backfill samples were prepared using Portland cement, and experimental samples were prepared by partially replacing Portland cement with 10 or 20 wt.% fly ash as a byproduct (artificial) pozzolan or pumice as a natural pozzolan. Samples were cured for 7, 14, and 28 days to investigate uniaxial compressive strength development. Backfill samples containing 10 wt.% pumice had almost a similar compressive strength as reference samples. There is strong potential for pumice to be used in cemented backfill to minimize costs, improve backfill properties, and promote the sustainability of the mining industry.


2012 ◽  
Vol 476-478 ◽  
pp. 1585-1588
Author(s):  
Hong Pan ◽  
Guo Zhong Li

The comprehensively modified effect of cement, VAE emulsion and self-made acrylic varnish on mechanical and water-resistant properties of gypsum sample was investigated and microstructure of gypsum sample was analyzed. Experimental results exhibit that absolutely dry flexural strength, absolutely dry compressive strength, water absorption and softening coefficient of gypsum specimen with admixture of 10% ordinary Portland cement and 6% VAE emulsion and acrylic varnish coated on its surface can respectively reach to 5.11MPa , 10.49 MPa, 8.32% and 0.63, respectively.


2009 ◽  
Vol 1242 ◽  
Author(s):  
Rivas-Vázquez L.P. ◽  
Suárez-Orduña R. ◽  
Valera-Zaragoza M. ◽  
Máas-Díaz A. De la L. ◽  
Ramírez-Vargas E.

ABSTRACTThe effects of waste polyethylene aggregate as admixture agent in Portland cement at different addition polyethylene/cement ratios from 0.0156 to 0.3903 were investigated. The reinforced samples were prepared according the ASTM C 150 Standard (samples of 5 × 5 × 5 cm). The reinforcing fibers were milling at a size of 1/25 in diameter, form waste and used them to evaluate the effects in mechanical properties in cement-based composites. The evaluation of polyethylene as additive was based on results of density and compression tests. The 28-day compressive strength of cement reforced with plastic waste at a replacement polyethylene/cement ratio of 0.0468 was 23.5 MPa compared to the control concrete (7.5 MPa). The density of cement replaced with polyethylene varies from 2.114 (0% polyethylene) to 1.83 g/cm3 by the influence of polyethylene.


Sign in / Sign up

Export Citation Format

Share Document