scholarly journals Effects of Domestic and Wild Ungulate Management on Young Oak Size and Architecture

2021 ◽  
Vol 13 (14) ◽  
pp. 7930
Author(s):  
Aida López-Sánchez ◽  
Sonia Roig ◽  
Rodolfo Dirzo ◽  
Ramón Perea

Scattered oaks in traditional silvopastoral systems (i.e., “dehesas”) provide important ecological services. However, livestock intensification applied to these systems over the last century has affected the architecture of young oak plants. This unsuitable rangeland management practice jeopardizes the long-term system sustainability. Here we examine the alterations in architecture of regenerating oak plants in Mediterranean dehesas under three representative management regimes: (1) traditional management with extensive sheep grazing; (2) commercially driven management with extensive cattle grazing, and (3) native deer grazing at moderate stocking rates (<0.11 livestock units × ha-1). Plant architecture was considerably altered in cattle-grazed “dehesas”, finding a 50% reduction in plant height–diameter ratios, compared to sheep-grazed dehesas where plants with higher height–diameter ratios predominated. Young oak plants, however, showed less altered architecture and less probability of damage on shoot apex (0.20-fold difference) in areas with deer grazing at moderate stocking rates. In addition, those young oak plants with multi-stemmed individual architecture were more stunted (lower values of crown height–diameter ratio) in areas with livestock grazing than wildlife areas (0.78-fold difference). Shrub presence, under all management schemes, helped to increase in plant height, except when shrubs were located under tree canopies. Conversely, plants without shrub protection showed stunted architecture with well-developed basal diameters but short stature. Appropriate sustainable practices should include cattle stocking rate reduction, traditional sheep grazing promotion, nurse shrub preservation and fencing stunted individuals along with pruning basal sprouts. Our study indicates that management may have important consequences on dehesa regeneration via alterations of plant architecture and therefore on system sustainability.

Forests ◽  
2019 ◽  
Vol 10 (6) ◽  
pp. 515 ◽  
Author(s):  
Jan Kadavý ◽  
Zdeněk Adamec ◽  
Barbora Uherková ◽  
Michal Kneifl ◽  
Robert Knott ◽  
...  

Research Highlights: The influence of litter raking and livestock grazing on the development of juvenile sessile oak and European hornbeam sprouts as well as on sessile oak standards were studied. Such experiments are very rare, especially in central Europe where these activities have been prohibited for several decades. Little is known on how these ancient management activities affect tree growth. Background and Objectives: Traditional management practices in coppice forests such as grazing and litter raking have been abandoned, but have recently been studied as to whether these practices can substantially contribute to an increase in the species diversity of coppices. The important question is, however, how these practices influence the growth of coppice-with-standards. Therefore, this study focused on the effect of grazing, litter raking, and their combination on both sprouts and adult trees in a coppice-with-standards system one year after harvest. Materials and Methods: The experiment was carried out in the area of the Training Forest Enterprise Masaryk Forest Křtiny, Czech Republic, in a forest stand dominated by sessile oak and European hornbeam. We analyzed 132 oak polycormons, 132 hornbeam polycormons, and 163 oak standards. Results: The number of sprouts per stump was affected by the stump size and management practice: (A) coppice-with-standards, litter raking, and sheep grazing; (B) coppice-with-standards and sheep grazing; (C) coppice-with-standards and litter raking; and (D) coppice-with-standards), but not by tree species. The number of the sprouts as well as their height increased with the stump size. In contrast, grazing resulted in a smaller height of the sprouts while thinner sprouts were found under a combination of grazing and raking. When comparing the species, the oak sprouts were higher and thicker when compared to the hornbeam sprouts. The increment of standards increased after stand harvest. This, however, was not the result of grazing or raking, but the response to the reduction of tree number and thus of competition between neighboring trees. Conclusions: The results showed that there were rather negative impacts from the implemented traditional management practices on the growth of sprouts. This may lead to the question of whether ecological diversity resulting from the traditional practices may prevail their negative effect on the growth of the coppices.


2013 ◽  
Vol 35 (3) ◽  
pp. 285 ◽  
Author(s):  
A. M. Cingolani ◽  
M. V. Vaieretti ◽  
M. A. Giorgis ◽  
N. La Torre ◽  
J. I. Whitworth-Hulse ◽  
...  

Soil erosion, as a result of livestock grazing, has been widely reported for arid and semiarid ecosystems, but information is lacking in more mesic ecosystems where erosion is generally studied in relation to agriculture. To test the hypothesis that, in the high-mountain rangelands of Córdoba (Argentina), grazing by livestock can drive the system into a rocky desert, 200 4 × 4 m plots under different livestock stocking rates and timings of grazing were monitored for 5 years. Four indicators of soil erosion: change rate of rock surface and of total bare surface, advance rate of erosion edges, and their activity persistence were estimated for each plot. Erosion edges are steps with a vertical bare soil surface, whose advance usually leaves behind an exposed rock area. For each plot, the average annual stocking rate for the 5-year period, and an index of seasonality, were calculated. Multiple regressions were used to analyse the data. Under high stocking rates, rock and bare surface increased, edges advanced faster and persisted more actively, while under low or nil stocking rates, rock and bare surface decreased and edges tended to stabilise. From these results, it was estimated that under high stocking rates, 18% of the whole area could be transformed into rocky surface in 400 years. As fire is a usual tool for this rangeland management, surface soil loss during 1 year in 77 burned and unburned plots, with and without post-fire livestock grazing, were compared. Burned plots lost 0.6 cm of surface soil when grazed, and 0.4 cm when ungrazed, while unburned plots lost less than 0.05 cm when grazed, and gained 0.07 cm when ungrazed. It was concluded that the present-day combination of livestock and fire management has the potential to convert this rangeland into a rocky desert. It is suggested that commercial livestock production, as it is carried on at present, is not sustainable, and some suggestions on changes necessary for a future sustainable grazing industry are made.


2016 ◽  
Vol 38 (1) ◽  
pp. 1 ◽  
Author(s):  
Richard B. Harris ◽  
Leah H. Samberg ◽  
Emily T. Yeh ◽  
Andrew T. Smith ◽  
Wang Wenying ◽  
...  

Livestock grazing is the principal land use in arid central Asia, and range degradation is considered a serious problem within much of the high-elevation region of western China termed the Qinghai-Tibetan Plateau (QTP). Rangeland degradation on the QTP is variously attributed to poor livestock management, historical-cultural factors, changing land tenure arrangements or socioeconomic systems, climate change, and damage from small mammals. Few studies have examined currently managed pastures using detailed data capable of isolating fine-scale livestock–vegetation interactions. The aim of the study was to understand how differences among livestock (primarily sheep) management strategies of pastoralists during winter affected subsequent rangeland condition and productivity. Plant species composition, annual herbage mass, and indicators of erosion were quantified during four summers (2009–2012) on winter pastures managed by 11 different pastoralists on QTP steppe rangeland in Qinghai Province, China. Data came from repeated-measurements on 317 systematically located permanent plots, as well as pastoralist interviews and the use of GPS-equipped livestock. Relationships between annual weather variation and herbage mass were modelled using an independent set of vegetation measurements obtained from livestock exclosures. Account was taken of inherent site differences among pastures. Annual variation in herbage mass was found to be best fitted by a model containing a negative function of winter-season temperature and a positive function of spring-season temperature. Accounting for annual and site effects, significant differences among pastoralists were found for most response variables, suggesting that individual heterogeneity among management approaches had consequences, even among neighbouring pastoralists. Annual herbage mass of preferred plant species was positively associated, whereas that of unpreferred species was negatively associated, with mean sheep density and intensity of use. However, the proportion of bare soil, an index of erosion, and annual herbage mass of unpreferred forbs were found to have positive relationships with sheep grazing pressure during the preceding winter, whereas live vegetation cover and annual herbage mass of preferred grasses were negatively related. Thus, on a spatial scale, pastoralists responded adaptively to the cover of preferred plant species while not responding to total annual herbage mass. Pastoralists stocked pastures more heavily, and livestock used regions within pastures more intensively, where preferred species had a higher cover. However, where sheep grazing pressure was high, downward temporal trends in the herbage mass of preferred species were exacerbated. Pastures that were stocked at a lower density did not experience the negative trends seen in those with a higher density.


2018 ◽  
Vol 47 (2) ◽  
pp. 336-356 ◽  
Author(s):  
Gregory L. Torell ◽  
Katherine D. Lee

Climate change will increase variability in temperature and precipitation on rangelands, impacting ecosystem services including livestock grazing. Facing uncertainty about future climate, managers must know if current practices will maintain rangeland sustainability. Herein, the future density of an invasive species, broom snakeweed, is estimated using a long-term ecological dataset and climate projections. We find that livestock stocking rates determined using a current method result in lower forage production, allowable stocking rate, and grazing value than an economically efficient stocking rate. Results indicate that using ecology and adaptive methods in management are critical to the sustainability of rangelands.


Sensors ◽  
2019 ◽  
Vol 19 (12) ◽  
pp. 2682 ◽  
Author(s):  
Wenyi Cao ◽  
Jing Zhou ◽  
Yanping Yuan ◽  
Heng Ye ◽  
Henry T. Nguyen ◽  
...  

Flood has an important effect on plant growth by affecting their physiologic and biochemical properties. Soybean is one of the main cultivated crops in the world and the United States is one of the largest soybean producers. However, soybean plant is sensitive to flood stress that may cause slow growth, low yield, small crop production and result in significant economic loss. Therefore, it is critical to develop soybean cultivars that are tolerant to flood. One of the current bottlenecks in developing new crop cultivars is slow and inaccurate plant phenotyping that limits the genetic gain. This study aimed to develop a low-cost 3D imaging system to quantify the variation in the growth and biomass of soybean due to flood at its early growth stages. Two cultivars of soybeans, i.e. flood tolerant and flood sensitive, were planted in plant pots in a controlled greenhouse. A low-cost 3D imaging system was developed to take measurements of plant architecture including plant height, plant canopy width, petiole length, and petiole angle. It was found that the measurement error of the 3D imaging system was 5.8% in length and 5.0% in angle, which was sufficiently accurate and useful in plant phenotyping. Collected data were used to monitor the development of soybean after flood treatment. Dry biomass of soybean plant was measured at the end of the vegetative stage (two months after emergence). Results show that four groups had a significant difference in plant height, plant canopy width, petiole length, and petiole angle. Flood stress at early stages of soybean accelerated the growth of the flood-resistant plants in height and the petiole angle, however, restrained the development in plant canopy width and the petiole length of flood-sensitive plants. The dry biomass of flood-sensitive plants was near two to three times lower than that of resistant plants at the end of the vegetative stage. The results indicate that the developed low-cost 3D imaging system has the potential for accurate measurements in plant architecture and dry biomass that may be used to improve the accuracy of plant phenotyping.


1996 ◽  
Vol 127 (2) ◽  
pp. 271-280 ◽  
Author(s):  
P. J. O'Reagain ◽  
B. C. Goetsch ◽  
R. N. Owen-Smith

SUMMARYThe effects of species composition and sward structure on the ingestive behaviour of cattle and sheep grazing a mesic, low quality grassland in South Africa were investigated over the 1990–93 grazing seasons. Species composition had a significant (P < 0·05) effect on sheep bite size and on cattle and sheep bite rates but had no effect on dry matter intake rate (IR). Species composition could, however, affect IR over longer grazing periods than those used in the experiment.Sward structure had a major effect on ingestive behaviour. Cattle and sheep bite rates and cattle grazing time, were negatively correlated (P < 0·05) with plant height but positively correlated (P < 0·05) with sward greenness. Bite size and hence IR in cattle and sheep were strongly correlated (P < 0·001) with plant height. Cattle IR increased from 6 to 20g/min over the range of heights encountered and appeared to reach an asymptote at a plant height of 20–25 cm. Sheep IR, expressed per unit of body mass, increased from 0·01 to an asymptote or maximum of 0·13 g/min/kg at plant heights of 10–15 cm. For sheep there was evidence of a non-asymptotic functional response at some sites with IR being maximized at certain sward heights but declining thereafter. This suggests the possible existence of a third, quality dimension to the functional response on these low-quality grasslands.


1972 ◽  
Vol 12 (56) ◽  
pp. 240 ◽  
Author(s):  
KFM Reed ◽  
RW Snaydon ◽  
A Axelsen

Young sheep were rotationally grazed, at two stocking rates, on pasture sown to combinations of two legume species (lucerne or subterranean clover) and two grass species (a mixture of annual and biennial ryegrass or phalaris) at Canberra. Liveweight gains were 45 per cent greater, and wool production was 10 per cent greater, on the lucerne dominant pasture (87 per cent lucerne) than on the grass dominant subterranean clover pasture (8 per cent subterranean clover). The differences were maximum during summer, but also occurred during spring. Mortality and supplementary feed requirement on grass dominant pasture was double that on lucerne pasture. Liveweight gains were 13 per cent greater on pasture sown to ryegrass than on pasture sown to phalaris. Sheep mortality was eight times greater on the phalaris than on the ryegrass pasture, and survival feed requirements at least double. The superior animal production from lucerne pasture was due mainly to the ability of lucerne to grow during periods of low rainfall and to maintain a high production of legume in the pasture.


1986 ◽  
Vol 8 (1) ◽  
pp. 46 ◽  
Author(s):  
RD Graetz

Measurements were made of the wool growth, body weight gain and diet of sheep grazing a saltbush pasture near Broken Hill, N.S.W. The experiment utilized a fenceline contrast in saltbush (Atriplex vesrcarra) density that was visible on Landsat imagery. It ran for five years (1976-1981) with a design of two pasture types by two stocking rates. Fleece weights varied from 3.9-6.0 kg/head and wool production from 0.6-2.9 kg/ha. Neither wool production per head nor bodyweight were substantially affected by stocking rate or pasture type. The composition and quality of the diets selected by sheep on both pastures were identical and of high nutritional value indicating their capability to accommodate differences in pasture composition. Pasture quality was not limiting between stocking rates or determined by the abundance of saltbush. Changes in pasture composition resulting from grazing and exclosure were small and of no significance.


Plants ◽  
2020 ◽  
Vol 9 (6) ◽  
pp. 725 ◽  
Author(s):  
Lisa Burgel ◽  
Jens Hartung ◽  
Daniele Schibano ◽  
Simone Graeff-Hönninger

The impact of exogenously applied plant growth regulators (PGR), 1-naphthalenaecetic acid (NAA), 6-benzylaminopurine (BAP), and a mixture of both (NAA/BAP-mix), was investigated in regard to plant height, length of axillary branches, number of internodes, biomass yield and cannabinoid content of three different phytocannabinoid-rich (PCR) Cannabis genotypes. The results showed that total plant height was significantly reduced under the application of NAA (28%), BAP (18%), and NAA/BAP-mix treated plants (15%). Axillary branch length was also significantly reduced by 58% (NAA) and 30% (NAA/BAP-mix). BAP did not significantly reduce the length of axillary branches. The number of internodes was reduced by NAA (19%), BAP (10%), and the NAA/BAP-mix (14%) compared to the untreated control. NAA application influenced the plant architecture of the tested cv. KANADA beneficially, resulting in a more compact growth habitus, while inflorescence yield (23.51 g plant−1) remained similar compared to the control (24.31 g plant−1). Inflorescence yield of v. 0.2x and cv. FED was reduced due to PGR application while cannabinoid content remained stable. Overall, the application of PGR could be used on a genotype-specific level to beneficially influence plant architecture and optimize inflorescence yield per unit area and thus cannabinoid yield, especially in the presence of space limitations under indoor cultivation.


BMC Genetics ◽  
2019 ◽  
Vol 20 (1) ◽  
Author(s):  
Huijun Guo ◽  
Hongchun Xiong ◽  
Yongdun Xie ◽  
Linshu Zhao ◽  
Jiayu Gu ◽  
...  

Abstract Background Wheat mutant resources with phenotypic variation have been developed in recent years. These mutants might carry favorable mutation alleles, which have the potential to be utilized in the breeding process. Plant architecture and yield-related features are important agronomic traits for wheat breeders and mining favorable alleles of these traits will improve wheat characteristics. Results Here we used 190 wheat phenotypic mutants as material and by analyzing their SNP variation and phenotypic data, mutation alleles for plant architecture and yield-related traits were identified, and the genetic effects of these alleles were evaluated. In total, 32 mutation alleles, including three pleiotropic alleles, significantly associated with agronomic traits were identified from the 190 wheat mutant lines. The SNPs were distributed on 12 chromosomes and were associated with plant height (PH), tiller number, flag leaf angle (FLA), thousand grain weight (TGW), and other yield-related traits. Further phenotypic analysis of multiple lines carrying the same mutant allele was performed to determine the effect of the allele on the traits of interest. PH-associated SNPs on chromosomes 2BL, 3BS, 3DL, and 5DL might show additive effects, reducing PH by 10.0 cm to 31.3 cm compared with wild type, which means that these alleles may be favorable for wheat improvement. Only unfavorable mutation alleles that reduced TGW and tiller number were identified. A region on chromosome 5DL with mutation alleles for PH and TGW contained several long ncRNAs, and their sequences shared more than 90% identity with cytokinin oxidase/dehydrogenase genes. Some of the mutation alleles we mined were colocalized with previously reported QTLs or genes while others were novel; these novel alleles could also result in phenotypic variation. Conclusion Our results demonstrate that favorable mutation alleles are present in mutant resources, and the region between 409.5 to 419.8 Mb on chromosome 5DL affects wheat plant height and thousand grain weight.


Sign in / Sign up

Export Citation Format

Share Document