scholarly journals A Study into the Availability, Costs and GHG Reduction in Drop-In Biofuels for Shipping under Different Regimes between 2020 and 2050

2021 ◽  
Vol 13 (17) ◽  
pp. 9900
Author(s):  
Douwe F. A. van der Kroft ◽  
Jeroen F. J. Pruyn

In this study, various scenarios were developed that correspond to estimations of future biomass availability and biofuel demand from the maritime industry. These marine biofuel demand scenarios were based on the Greenhouse Gas (GHG) reduction targets of the Renewable Energy Directive II (RED II) and the International Maritime Organization (IMO). A multi-objective Mixed Integer Linear Programming (MILP) model was developed which is used to optimize the Well-to-Tank (WtT) phases of each studied scenario. This resulted in an overview of the most feasible use of feedstocks, deployment of new conversion technologies and trade flows between regions. Additionally, the results provided insight into the costs and emission reduction potential of marine biofuels. By analyzing the results from this study, improved insight into the potential of drop-in biofuels for reaching the proposed emission reduction targets for the maritime sector was developed. A trade-off between costs and emissions was found to result in potential GHG reductions between 68–95% compared to Heavy Fuel Oil (HFO) for 800–2300 EUR/ton. More specifically, 80% GHG reduction compared to HFO can be achieved at fuel costs of between 900–1050 EUR/ton over the studied time period.

Author(s):  
Julie Adams

Because the density of heavy fuel oil (HFO) is equal to or greater than that of freshwater, it behaves differently than lighter oils that float. Heavy fuel oil can sink to the bottom or be suspended in the water column and affect aquatic organisms that are not typically exposed to floating oils. Most research on oil spill technologies thus far examines the direct exposure of rainbow trout to floating or submerged oil droplets; there is little knowledge of the impacts of non‐floating heavy fuel oil on the water column and benthic organisms exposed to oil that accumulates in sediments. The toxicity of sunken HFO 6303 and Medium South American (MESA; reference) crude oil, as well as the effects of weathering on toxicity to embryos of rainbow trout were assessed using increasing concentrations of oil on gravel substrate in continuous‐flow desorption columns. Toxicity was assessed by measurement of the rates of mortality and growth, and the prevalence of blue sac disease, a hallmark sign of oil toxicity. The lower median lethal concentration for HFO compared to MESA indicated that HFO is more toxic. Interestingly, the LC50 values for fresh and weathered for both oils were similar, indicating little change in toxicity when the oil weathers naturally. Repetition of this experiment and analysis of PAH content in each treatment will provide more insight into the environmental and health risks associated with sunken heavy fuel oil.   


2020 ◽  
Vol 8 (3) ◽  
pp. 183 ◽  
Author(s):  
Kyunghwa Kim ◽  
Gilltae Roh ◽  
Wook Kim ◽  
Kangwoo Chun

The shipping industry is becoming increasingly aware of its environmental responsibilities in the long-term. In 2018, the International Maritime Organization (IMO) pledged to reduce greenhouse gas (GHG) emissions by at least 50% by the year 2050 as compared with a baseline value from 2008. Ammonia has been regarded as one of the potential carbon-free fuels for ships based on these environmental issues. In this paper, we propose four propulsion systems for a 2500 Twenty-foot Equivalent Unit (TEU) container feeder ship. All of the proposed systems are fueled by ammonia; however, different power systems are used: main engine, generators, polymer electrolyte membrane fuel cell (PEMFC), and solid oxide fuel cell (SOFC). Further, these systems are compared to the conventional main engine propulsion system that is fueled by heavy fuel oil, with a focus on the economic and environmental perspectives. By comparing the conventional and proposed systems, it is shown that ammonia can be a carbon-free fuel for ships. Moreover, among the proposed systems, the SOFC power system is the most eco-friendly alternative (up to 92.1%), even though it requires a high lifecycle cost than the others. Although this study has some limitations and assumptions, the results indicate a meaningful approach toward solving GHG problems in the maritime industry.


2020 ◽  
Vol 12 (21) ◽  
pp. 8793 ◽  
Author(s):  
Elizabeth Lindstad ◽  
Gunnar S. Eskeland ◽  
Agathe Rialland ◽  
Anders Valland

Current Greenhous gas emissions (GHG) from maritime transport represent around 3% of global anthropogenic GHG emissions and will have to be cut in half by 2050 to meet Paris agreement goals. Liquefied natural gas (LNG) is by many seen as a potential transition fuel for decarbonizing shipping. Its favorable hydrogen to carbon ratio compared to diesel (marine gas oil, MGO) or bunker fuel (heavy fuel oil, HFO) translates directly into lower carbon emissions per kilowatt produced. However, these gains may be nullified once one includes the higher Well-to-tank emissions (WTT) of the LNG supply chain and the vessel’s un-combusted methane slip (CH4) from its combustion engine. Previous studies have tended to focus either on greenhouse gas emissions from LNG in a Well-to-wake (WTW) perspective, or on alternative engine technologies and their impact on the vessel’s Tank-to-wake emissions (TTW). This study investigates under what conditions LNG can serve as a transition fuel in the decarbonization of maritime transport, while ensuring the lowest possible additional global warming impact. Transition refers to the process of moving away from fossil fuels towards new and low carbon fuels and engine technologies. Our results show: First, the importance of applying appropriate engine technologies to maximize GHG reductions; Second, that applying best engine technologies is not economically profitable; Third, how regulations could be amended to reward best engine technologies. Importantly, while the GHG reduction of LNG even with best engine technology (dual fuel diesel engine) are limited, ships with these engines can with economically modest modification switch to ammonia produced with renewable energy when it becomes available in sufficient amounts.


Author(s):  
B. Chudnovsky ◽  
D. Livshits ◽  
S. Baitel

Traditional methods for reducing emissions, by modification of the firing system to control the mixing of fuel and air, the reduction of flame temperatures (for NOx emission reduction), and/or the post combustion treatment of the flue gas to remove NOx, SO2 particulates are very expensive. Hence, before implementation of expensive measures for the reduction of emissions, it is necessary to evaluate all low cost alternatives, such as burning alternative fuels and mixing it with other liquid fuels. Methanol offers these advantages, being a derivative of natural gas which is partly de-linked from oil, and is a clean burning fuel. Existing experience [1, 2] has shown that with inexpensive and minimal system modifications, methanol is easily fired and is fully feasible as an alternative fuel. Relative to heavy fuel and light fuel, methanol can achieve improved efficiency and lower NOx emissions due to the lower flame temperature and nitrogen content. Since methanol contains no sulfur, there are no SO2 emissions. The clean burning characteristics of methanol are expected to lead to clean pressure parts and lower maintenance costs. In this paper we present results for the specific 10 ton/hr industrial boiler (results of the burning of methanol in large utility boilers we presented in our earlier publications) located at DOR Chemicals. In this study we experimented with methanol fractions (from 0 to 100 % by heat) at different boiler loads and found that the methanol and heavy fuel oil mixtures enabled us to meet the commonly accepted emissions limit for NOx with zero CO emissions. SO2 emissions were also reduced according to methanol heat fraction. Methanol burning leads to a more than 10 % reduction of CO2. It should be noted that in our tests we used a special patented mixing device (the “Fuel Activation Device – FAD) developed by Turbulent Energy Inc. for preparing premixed or in-line blends. The results show that more than 50% of NOx reduction is achieved when light fuel oil is replaced by methanol and more than an 80% reduction when heavy fuel oil is replaced by methanol. For all boiler operation modes 100% of combustion efficiency is achieved. Methanol and liquid fuel blends lead to significant reduction of emissions depending on the methanol heat fraction. Burning of a blend of liquid fuel with water leads to a significant reduction of NOx. In addition, the usage of the FAD in our tests had positive effects on boiler efficiency improvement both for LFO and methanol firing. In this paper we also present the study of methanol and diesel fuel burning in diesel engine. It should be noted that blends were prepared by a using special mixing device developed by Turbulent Energy Inc. The performance of the engine using blended fuel compared to the performance of the engine with diesel fuel. It was also found that with using the blend one may achieve a more than 75 % reduction of NOx emissions when diesel oil is replaced by 20% methanol. Methanol and diesel oil co-firing leads to a reduction of SO2 emissions depending on the heat fraction of methanol. We believe that the conclusions of the work presented are general and can be applied to any other industrial, utility boiler, or diesel engine as well.


Author(s):  
Laís A. Nascimento ◽  
Marilda N. Carvalho ◽  
Mohand Benachour ◽  
Valdemir A. Santos ◽  
Leonie A. Sarubbo ◽  
...  

2017 ◽  
Vol 68 ◽  
pp. 203-215 ◽  
Author(s):  
Dionisis Stefanitsis ◽  
Ilias Malgarinos ◽  
George Strotos ◽  
Nikolaos Nikolopoulos ◽  
Emmanouil Kakaras ◽  
...  

1996 ◽  
Vol 26 (2) ◽  
pp. 2241-2250 ◽  
Author(s):  
M.A. Byrnes ◽  
E.A. Foumeny ◽  
T. Mahmud ◽  
A.S.A.K. Sharifah ◽  
T. Abbas ◽  
...  

Author(s):  
F. Mikaela Nordborg ◽  
Diane L. Brinkman ◽  
Gerard F. Ricardo ◽  
Susana Agustí ◽  
Andrew P. Negri

Author(s):  
Akili D. Khawaji ◽  
Jong-Mihn Wie

The most popular method of controlling sulfur dioxide (SO2) emissions in a steam turbine power plant is a flue gas desulfurization (FGD) process that uses lime/limestone scrubbing. Another relatively newer FGD technology is to use seawater as a scrubbing medium to absorb SO2 by utilizing the alkalinity present in seawater. This seawater scrubbing FGD process is viable and attractive when a sufficient quantity of seawater is available as a spent cooling water within reasonable proximity to the FGD scrubber. In this process the SO2 gas in the flue gas is absorbed by seawater in an absorber and subsequently oxidized to sulfate by additional seawater. The benefits of the seawater FGD process over the lime/limestone process and other processes are; 1) The process does not require reagents for scrubbing as only seawater and air are needed, thereby reducing the plant operating cost significantly, and 2) No solid waste and sludge are generated, eliminating waste disposal, resulting in substantial cost savings and increasing plant operating reliability. This paper reviews the thermodynamic aspects of the SO2 and seawater system, basic process principles and chemistry, major unit operations consisting of absorption, oxidation and neutralization, plant operation and performance, cost estimates for a typical seawater FGD plant, and pertinent environmental issues and impacts. In addition, the paper presents the major design features of a seawater FGD scrubber for the 130 MW oil fired steam turbine power plant that is under construction in Madinat Yanbu Al-Sinaiyah, Saudi Arabia. The scrubber with the power plant designed for burning heavy fuel oil containing 4% sulfur by weight, is designed to reduce the SO2 level in flue gas to 425 ng/J from 1,957 ng/J.


Sign in / Sign up

Export Citation Format

Share Document