scholarly journals Changes in Fan Energy Consumption According to Filters Installed in Residential Heat Recovery Ventilators in Korea

2021 ◽  
Vol 13 (18) ◽  
pp. 10119
Author(s):  
Kyungjoo Cho ◽  
Chang-U Chae ◽  
Dongwoo Cho ◽  
Taeyeon Kim

In recent years, because of outdoor ultrafine particles, residential heat recovery ventilators (HRVs) have been used with high efficiency filters by residents in Korea. However, as pre-filters are primarily used in residential HRVs, when a high-efficiency particulate air (HEPA) filter is installed, the filter pressure drop increases, reducing the airflow rate, which requires the fan to draw more power to maintain the airflow rate. Therefore, in this study, the change in power usage of HRVs installed in residential apartments in Korea with various air volumes and filters were analyzed. The results show that HEPA filters consumed 13.5–17.5% (16.1% on an average), 11.8–16.0% (13.8% on an average), and 16.8–41.3% (30.1% on an average) more power at 0.5, 1.0, and 1.5 air changes/h, respectively, than the pre-filter. These results indicate that unexpected power consumption increase could be caused if a pre-filter is replaced with a HEPA filter in residential small air-volume HRVs. This may lead to noise or failure due to fan overload. Thus, it is necessary to operate residential HRVs at the optimum air volume according to the fan performance.

Author(s):  
Ion-Costinel Mareș ◽  
Tiberiu Catalina ◽  
Marian-Andrei Istrate ◽  
Alexandra Cucoș ◽  
Tiberius Dicu ◽  
...  

The purpose of this article is the assessment of energy efficiency and indoor air quality for a single-family house located in Cluj-Napoca County, Romania. The studied house is meant to be an energy-efficient building with thermal insulation, low U-value windows, and a high efficiency boiler. Increasing the energy efficiency of the house leads to lower indoor air quality, due to lack of natural ventilation. As the experimental campaign regarding indoor air quality revealed, there is a need to find a balance between energy consumption and the quality of the indoor air. To achieve superior indoor air quality, the proposed mitigation systems (decentralized mechanical ventilation with heat recovery combined with a minimally invasive active sub-slab depressurization) have been installed to reduce the high radon level in the dwelling, achieving an energy reduction loss of up to 86%, compared to the traditional natural ventilation of the house. The sub-slab depressurization system was installed in the room with the highest radon level, while the local ventilation system with heat recovery has been installed in the exterior walls of the house. The results have shown significant improvement in the level of radon decreasing the average concentration from 425 to 70 Bq/m 3, respectively the carbon dioxide average of the measurements being around 760 ppm. The thermal comfort improves significantly also, by stabilizing the indoor temperature at 21 °C, without any important fluctuations. The installation of this system has led to higher indoor air quality, with low energy costs and significant energy savings compared to conventional ventilation (by opening windows).


Author(s):  
Alilou Youssef ◽  
Bourrous Soleiman ◽  
Thomas Dominique ◽  
Bardin-Monnier Nathalie ◽  
Nérisson Philippe ◽  
...  

In hazardous industrial activities such as in nuclear facilities, High Efficiency Particulate Air filters (HEPA filters) are essential to ensure the containment of airborne contamination. Most of the filters used in ventilation networks are pleated, in order to offer a larger surface of filtration. For industrial risks likely to lead to an important release of particles (e.g. fire), predicting the evolution of the pressure drop of pleated filters is very important, in order to anticipate any dysfunction, failure or breaking of these devices. Pressure drop variations are linked to airflow rate variations and to clogging process of the medium by airborne particles. Thus, the airflow pattern in a pleat channel is essential for optimizing the filter design and enhancing its lifetime. Particles are transported by the airflow and deposited at the filter surface; hence, the geometry of the dust cake (shape and location) is partially determined knowing the velocity streamlines. The present paper focuses on the characterization of airflows in a clean HEPA filter. The difficulty to perform fine measurement on a real scale filter led us to develop an experimental device, consisting in the reproduction of a single pleat, identical to a real pleat constituting industrial filters. The small dimension of the pleat makes the velocity measurement difficult to establish. That is why μ-PIV method has been adapted to measure the velocity field inside the filter for different filtration velocities at the first moments of the experiment, in order to avoid the impact of clogging by particles used to seed the flow. These particles are DEHS droplets 0.01 < St < 0.05. In the future, these well-characterized airflows will be the basis for CFD computation of particle transport and deposition inside the pleats. Ultimately, the aim is to develop or upgrade physical models predicting the pressure drop evolution of pleated filters, during clogging process in accidental situations.


2012 ◽  
Vol 9 (2) ◽  
pp. 65
Author(s):  
Alhassan Salami Tijani ◽  
Nazri Mohammed ◽  
Werner Witt

Industrial heat pumps are heat-recovery systems that allow the temperature ofwaste-heat stream to be increased to a higher, more efficient temperature. Consequently, heat pumps can improve energy efficiency in industrial processes as well as energy savings when conventional passive-heat recovery is not possible. In this paper, possible ways of saving energy in the chemical industry are considered, the objective is to reduce the primary energy (such as coal) consumption of power plant. Particularly the thermodynamic analyses ofintegrating backpressure turbine ofa power plant with distillation units have been considered. Some practical examples such as conventional distillation unit and heat pump are used as a means of reducing primary energy consumption with tangible indications of energy savings. The heat pump distillation is operated via electrical power from the power plant. The exergy efficiency ofthe primary fuel is calculated for different operating range ofthe heat pump distillation. This is then compared with a conventional distillation unit that depends on saturated steam from a power plant as the source of energy. The results obtained show that heat pump distillation is an economic way to save energy if the temperaturedifference between the overhead and the bottom is small. Based on the result, the energy saved by the application of a heat pump distillation is improved compared to conventional distillation unit.


1987 ◽  
Vol 19 (3-4) ◽  
pp. 391-400 ◽  
Author(s):  
Zhou Ding ◽  
Cai Wei Min ◽  
Wang Qun Hui

This paper studies the use of bipolar-particles-electrodes in the decolorization of dyeing effluents. Treatment of highly colored solutions of various soluble dyes (such as direct, reactive, cationic or acid dyes) and also samples of dyeing effluents gave rise to an almost colorless transparent liquid, with removal of CODcr and BOD5 being as high as over 80%. The method is characterized by its high efficiency, low energy consumption and long performance life. A discussion of the underlying principle is given.


Electronics ◽  
2021 ◽  
Vol 10 (9) ◽  
pp. 1078
Author(s):  
Thi Thuy Pham ◽  
Dongmin Kim ◽  
Seo-Hyeong Jeong ◽  
Junghyup Lee ◽  
Donggu Im

This work presents a high efficiency RF-to-DC conversion circuit composed of an LC-CL balun-based Gm-boosting envelope detector, a low noise baseband amplifier, and an offset canceled latch comparator. It was designed to have high sensitivity with low power consumption for wake-up receiver (WuRx) applications. The proposed envelope detector is based on a fully integrated inductively degenerated common-source amplifier with a series gate inductor. The LC-CL balun circuit is merged with the core of the envelope detector by sharing the on-chip gate and source inductors. The proposed technique doubles the transconductance of the input transistor of the envelope detector without any extra power consumption because the gate and source voltage on the input transistor operates in a differential mode. This results in a higher RF-to-DC conversion gain. In order to improve the sensitivity of the wake-up radio, the DC offset of the latch comparator circuit is canceled by controlling the body bias voltage of a pair of differential input transistors through a binary-weighted current source cell. In addition, the hysteresis characteristic is implemented in order to avoid unstable operation by the large noise at the compared signal. The hysteresis window is programmable by changing the channel width of the latch transistor. The low noise baseband amplifier amplifies the output signal of the envelope detector and transfers it into the comparator circuit with low noise. For the 2.4 GHz WuRx, the proposed envelope detector with no external matching components shows the simulated conversion gain of about 16.79 V/V when the input power is around the sensitivity of −60 dBm, and this is 1.7 times higher than that of the conventional envelope detector with the same current and load. The proposed RF-to-DC conversion circuit (WuRx) achieves a sensitivity of about −65.4 dBm based on 45% to 55% duty, dissipating a power of 22 μW from a 1.2 V supply voltage.


Energies ◽  
2021 ◽  
Vol 14 (14) ◽  
pp. 4089
Author(s):  
Kaiqiang Zhang ◽  
Dongyang Ou ◽  
Congfeng Jiang ◽  
Yeliang Qiu ◽  
Longchuan Yan

In terms of power and energy consumption, DRAMs play a key role in a modern server system as well as processors. Although power-aware scheduling is based on the proportion of energy between DRAM and other components, when running memory-intensive applications, the energy consumption of the whole server system will be significantly affected by the non-energy proportion of DRAM. Furthermore, modern servers usually use NUMA architecture to replace the original SMP architecture to increase its memory bandwidth. It is of great significance to study the energy efficiency of these two different memory architectures. Therefore, in order to explore the power consumption characteristics of servers under memory-intensive workload, this paper evaluates the power consumption and performance of memory-intensive applications in different generations of real rack servers. Through analysis, we find that: (1) Workload intensity and concurrent execution threads affects server power consumption, but a fully utilized memory system may not necessarily bring good energy efficiency indicators. (2) Even if the memory system is not fully utilized, the memory capacity of each processor core has a significant impact on application performance and server power consumption. (3) When running memory-intensive applications, memory utilization is not always a good indicator of server power consumption. (4) The reasonable use of the NUMA architecture will improve the memory energy efficiency significantly. The experimental results show that reasonable use of NUMA architecture can improve memory efficiency by 16% compared with SMP architecture, while unreasonable use of NUMA architecture reduces memory efficiency by 13%. The findings we present in this paper provide useful insights and guidance for system designers and data center operators to help them in energy-efficiency-aware job scheduling and energy conservation.


Sign in / Sign up

Export Citation Format

Share Document