scholarly journals Different Geothermal Power Cycle Configurations Cost Estimation Models

2021 ◽  
Vol 13 (20) ◽  
pp. 11133
Author(s):  
Moein Shamoushaki ◽  
Giampaolo Manfrida ◽  
Lorenzo Talluri ◽  
Pouriya H. Niknam ◽  
Daniele Fiaschi

An economic assessment of different geothermal power cycle configurations to generate cost models is conducted in this study. The thermodynamic and exergoeconomic modeling of the cycles is performed in MATLAB coupled to Refprop. The models were derived based on robust multivariable regression to minimize the residuals by using the genetic algorithm. The cross-validation approach is applied to determine a dataset to examine the model in the training phase for validation and reduce the overfitting problem. The generated cost models are the total cost rate, the plant's total cost, and power generation cost. The cost models and the relevant coefficients are generated based on the most compatibilities and lower error. The results showed that one of the most influential factors on the ORC cycle is the working fluid type, which significantly affects the final economic results. Other parameters that considerably impact economic models results, of all configurations, are geothermal fluid pressure and temperature and inlet pressure of turbine. Rising the geothermal fluid mass flow rate has a remarkable impact on cost models as the capacity and size of equipment increases. The generated cost models in this study can estimate the mentioned cost parameters with an acceptable deviation and provide a fast way to predict the total cost of the power plants.

Author(s):  
Obumneme Oken

Nigeria has some surface phenomena that indicate the presence of viable geothermal energy. None of these locations have been explored extensively to determine the feasibility of sustainable geothermal energy development for electricity generation or direct heating. In this context, the present study aims to provide insight into the energy potential of such development based on the enthalpy estimation of geothermal reservoirs. This particular project was conducted to determine the amount of energy that can be gotten from a geothermal reservoir for electricity generation and direct heating based on the estimated enthalpy of the geothermal fluid. The process route chosen for this project is the single-flash geothermal power plant because of the temperature (180℃) and unique property of the geothermal fluid (a mixture of hot water and steam that exists as a liquid under high pressure). The Ikogosi warm spring in Ekiti State, Nigeria was chosen as the site location for this power plant. To support food security efforts in Africa, this project proposes the cascading of a hot water stream from the flash tank to serve direct heat purposes in agriculture for food preservation, before re-injection to the reservoir. The flowrate of the geothermal fluid to the flash separator was chosen as 3125 tonnes/hr. The power output from a single well using a single flash geothermal plant was evaluated to be 11.3 MW*. This result was obtained by applying basic thermodynamic principles, including material balance, energy balance, and enthalpy calculations. This particular project is a prelude to a robust model that will accurately determine the power capacity of geothermal power plants based on the enthalpy of fluid and different plant designs.


Author(s):  
Yousef Haseli

Abstract Thermal power plants operating on fossil fuels emit a considerable amount of polluting gases including carbon dioxide and nitrogen oxides. Several technologies have been developed or under development to avoid the emissions of, mainly, CO2 that are formed as a result of air-fuel combustion. While post-combustion capture methods are viable solutions for reduction of CO2 in the existing power plants, implementation of the concept of oxyfuel combustion in future power cycles appears to be a promising technique for clean power generation from fossil fuels. A novel power cycle that employs oxyfuel combustion method has been developed by NET Power. Known as the Allam cycle, it includes a turbine, an air separation unit (ASU), a combustor, a recuperator, a water separator, CO2 compression with intercooling and CO2 pump. (Over 90% of the supercritical CO2 flow is recycled back to the cycle as the working fluid, and the rest is extracted for further processing and storage. The present paper introduces a simplified thermodynamic analysis of the Allam power cycle. Analytical expressions are derived for the net power output, optimum turbine inlet temperature (TIT), and the molar flowrate of the recycled CO2 flow. The study aims to provide a theoretical framework to help understand the functional relationships between the various operating parameters of the cycle. The optimum TIT predicted by the presented expression is 1473 K which is fairly close to that reported by the cycle developers.


Author(s):  
Yongju Jeong ◽  
Seongmin Son ◽  
Seong kuk Cho ◽  
Seungjoon Baik ◽  
Jeong Ik Lee

Abstract Most of the power plants operating nowadays mainly have adopted a steam Rankine cycle or a gas Brayton cycle. To devise a better power conversion cycle, various approaches were taken by researchers and one of the examples is an S-CO2 (supercritical CO2) power cycle. Over the past decades, the S-CO2 power cycle was invented and studied. Eventually the cycle was successful for attracting attentions from a wide range of applications. Basically, an S-CO2 power cycle is a variation of a gas Brayton cycle. In contrast to the fact that an ordinary Brayton cycle operates with a gas phase fluid, the S-CO2 power cycle operates with a supercritical phase fluid, where temperatures and pressures of working fluid are above the critical point. Many advantages of S-CO2 power cycle are rooted from its novel characteristics. Particularly, a compressor in an S-CO2 power cycle operates near the critical point, where the compressibility is greatly reduced. Since the S-CO2 power cycle greatly benefits from the reduced compression work, an S-CO2 compressor prediction under off-design condition has a huge impact on overall cycle performance. When off-design operations of a power cycle are considered, the compressor performance needs to be specified. One of the approaches for a compressor off-design performance evaluation is to use the correction methods based on similitude analysis. However, there are several approaches for deriving the equivalent conditions but none of the approaches has been thoroughly examined for S-CO2 conditions based on data. The purpose of this paper is comparing these correction models to identify the best fitted approach, in order to predict a compressor off-design operation performance more accurately from limited amount of information. Each correction method was applied to two sets of data, SCEIL experiment data and 1D turbomachinery code off-design prediction code generated data, and evaluated in this paper.


Author(s):  
Mahshid Vatani ◽  
Masoud Ziabasharhagh ◽  
Shayan Amiri

With the progress of technologies, engineers try to evaluate new and applicable ways to get high possible amount of energy from renewable resources, especially in geothermal power plants. One of the newest techniques is combining different types of geothermal cycles to decrease wastage of the energy. In the present article, thermodynamic optimization of different flash-binary geothermal power plants is studied to get maximum efficiency. The cycles studied in this paper are single and double flash-binary geothermal power plants of basic Organic Rankine Cycle (ORC), regenerative ORC and ORC with an Internal Heat Exchanger (IHE). The main gain due to using various types of ORC cycles is to determine the best and efficient type of the Rankine cycle for combined flash-binary geothermal power plants. Furthermore, in binary cycles choosing the best and practical working fluid is an important factor. Hence three different types of working fluids have been used to find the best one that gives maximum thermal and exergy efficiency of combined flash-binary geothermal power plants. According to results, the maximum thermal and exergy efficiencies both achieved in ORC with an IHE and the effective working fluid is R123.


Author(s):  
Brian Janke ◽  
Thomas Kuehn

Thermodynamic analysis has been conducted for geothermal power cycles using a portion of deep ground sequestered CO2 as the working fluid. This allows energy production from much shallower depths and in geologic areas with much lower temperature gradients than those of current geothermal systems. Two different system designs were analyzed for power production with varying reservoir parameters, including reservoir depth, temperature, and CO2 mass flow rate. The first design is a direct single-loop system with the CO2 run directly through the turbine. This system was found to provide higher system efficiency and power production, however design complications such as the need for high pressure turbines, two-phase flow through the turbine and the potential for water-CO2 brine mixtures, could require the use of numerous custom components, driving up the cost. The second design is a binary system using CO2 as the heat transfer fluid to supply thermal energy to an Organic Rankine Cycle (ORC). While this system was found to have slightly less power production and efficiency than the direct system, it significantly reduces the impact of design complications associated with the direct system. This in turn reduces the necessity for certain custom components, thereby reducing system cost. While performance of these two systems is largely dependent on location and operating conditions, the binary system is likely applicable to a larger number of sites and will be more cost effective when used in combination with current off-the-shelf ORC power plants.


2020 ◽  
Author(s):  
Paolo Basile ◽  
Roberto Brogi ◽  
Favaro Lorenzo ◽  
Tiziana Mazzoni

<p><span><span>Social consensus is a </span><span>condition precedent for any intervention having an impact on the territory, such as geothermal power plants. Therefore, private investors studied and proposed innovative solution for the exploitation of the medium enthalpy geothermal resource, with “zero emissions” in atmosphere, with the target of minimizing its environmental impact. “Montenero” project, developed by GESTO Italia, complies with this precondition.</span></span></p><p><span><span>The area covered b</span><span>y the exploration and exploitation permit is located on the northern edge of the great geothermal anomaly of Mt. Amiata (Tuscany), about 10 km north of the geothermal field of Bagnore, included in the homonymous Concession of Enel Green Power.</span></span></p><p><span><span>The geological - structural setting of the area around the inactive volc</span><span>ano of Mt. Amiata has been characterized by researches for the geothermal field of Bagnore, carried out by Enel Green Power over the years. The geothermal reservoir is present in the limestone and evaporitic rocks of the “Falda Toscana”, below which stands the Metamorphic Basement, as testified by the wells of geothermal field of Bagnore. The foreseen reservoir temperature at the target depth of 1.800 m is 140 °C, with an incondensable gas content of 1,8% by weight.</span></span></p><p><span><span>The project was presented to the authorities in 2013 and it is </span><span>now undergoing exploitation authorization and features the construction of a 5 MW ORC (Organic Ranking Circle) binary power plant. The plant is fed by three production wells for a total mass flow rate of 700 t/h. The geothermal fluid is pumped by three ESPs (Electrical Submersible Pump) keeping the geothermal fluid in liquid state from the extraction through the heat exchangers to its final reinjection three wells.</span></span></p><p><span><span>The reinjection temperature is 70 °C and the circuit pressure is maintained above the </span><span>incondensable gas bubble pressure, i.e. 40 bar, condition which prevents also the formation of calcium carbonate scaling. The confinement of the geothermal fluid in a “closed loop system” is an important advantage from the environmental point of view: possible pollutants presented inside the geothermal fluid are not released into the environment and are directly reinjected in geothermal reservoir.</span></span></p><p><span><span>The </span><span>environmental authorization procedure (obtained) has taken into account all the environmental aspects concerning the natural matrices (air, water, ground, ...) potentially affected by the activities needed for the development, construction and operation of “Montenero” ORC geothermal power plant. A numerical modeling was designed and applied in order to estimate the effect of the cultivation activity and to assess the reinjection overpressure (seismic effect evaluation). The project also follows the “best practices” implemented in Italy by the “Guidelines for the usage of medium and high enthalpy geothermal resources” prepared in cooperation between the Ministry of Economic Development and the Ministry of the Environment.</span></span></p>


2016 ◽  
Author(s):  
Cukup Mulyana ◽  
Reza Adiprana ◽  
Aswad H. Saad ◽  
M. Ridwan H. ◽  
Fajar Muhammad

Tatapani Geothermal field is one of the most promising low-enthalpy geothermal fields in central India, located on Son-Narmada lineament in the state of Chhattisgarh, India. The Tatapani geothermal field geological, geo-chemical & reservoir data has been compiled and analysed for evaluating true power potential & better understanding of the field. The low enthalpy geothermal reservoirs can be utilized for power production using Organic Rankine Cycle (ORC) or binary power cycle. Based on previous research works done, the Tatapani geothermal field has been found to be very prospective and has got huge potential for power generation. The binary power cycle has been studied in detail along with thermodynamic concepts. In addition, similar low enthalpy geothermal power plants (conceptual & existing both) have been thoroughly studied in order to understand the concepts and methodology to perform technical feasibility based on thermodynamic and exergy analysis. The literature review covers the previous works done on Tatapani geothermal field including works on other geothermal fields in India along with previous research works for Thermodynamic & Exergy Analysis carried-out for binary geothermal power plants across the world for similar low enthalpy prospects. The methods of performing thermodynamic and exergy analysis for a potential geothermal power plant has been studied and compared. Exergy analysis highlights the areas of primary exergy destruction at various plant components and can be illustrated in the form of exergy flow diagram. The loss of exergy indicates the potential reasons for the inefficiencies within a process and exergic efficiency as conversion of input heat energy from the brine in to useful work output. The exergic efficiencies can be calculated for each component along with exergy destruction. The detailed study has been conducted in order to gather the knowledge regarding conducting the feasibility of setting up binary geothermal power plant at Tatapani from technical point of view using thermodynamic concepts.


2019 ◽  
Vol 2 (3) ◽  
pp. 525-531
Author(s):  
Mahmut Hekim ◽  
Engin Cetin

Geothermal power plants are the plants that provide the conversion of thermal energy in geothermal fluid to electrical energy as a result of the extraction of underground hot water resources to the earth by drilling. The total installed power of geothermal power plants in the field of geothermal resources in Turkey has reached 1,336 MW. The geothermal fluid, which is used for electric power generation in geothermal power plants, is re-injected into the underground wells after electrical energy production. For efficient generation of electrical energy in geothermal power plants, it is aimed to reuse the waste heat energy within the geothermal fluid before it is sent to the re-injection well. To achieve this aim, thermoelectric generator modules which convert waste heat energy to electrical energy can be used. In this study, a thermoelectric generator-based geothermal power plant simulator that converts geothermal fluid waste heat into electrical energy is installed and commissioned in the laboratory conditions.


Sign in / Sign up

Export Citation Format

Share Document