scholarly journals Effects of Alkali-Activated Algae Biochar on Soil Improvement after Phosphorus Absorption: Efficiency and Mechanism

2021 ◽  
Vol 13 (21) ◽  
pp. 11973
Author(s):  
Yan-Ning Liu ◽  
Li-Yuan He

Biochar is often used for the removal of phosphorus in wastewater. However, the improper treatment of adsorbed biochar might cause secondary pollution. In order to promote the recycling and harmless utilization of biochar with adsorbed phosphorus, a new modified biochar (ABC) was prepared from cyanobacteria in this study. The maximum adsorption capacity of ABC calculated from the Langmuir isotherm model was 38.17 mg·g−1. ABC was used to absorb phosphorus in wastewater, whose product (ABC/P) was used for soil improvement and soybean cultivation. The results showed that adding the proper amount of ABC/P could significantly increase the pH of the soil (from 6.52 ± 0.04 to 7.49 ± 0.08), organic matter content (from 34.02 ± 0.41 to 47.05 ± 0.14 g·kg−1), cation exchange capacity (from 3.01 ± 0.18 to 3.76 ± 0.07 cmol·kg−1), water-holding capacity (from 28.78 ± 0.34 to 35.03 ± 0.31%), effective phosphorus content, and total phosphorus content. Meanwhile, the soil alkaline phosphatase activity was improved. The plant height, root length, and fresh quality were promoted by planting soybeans in ABC/P-improved soil and were better than those of the control group. Therefore, ABC/P, as a new type of phosphorus fertilizer, has the potential for soil amendment for legume crops.

2021 ◽  
Vol 1 (42) ◽  
pp. 109-115
Author(s):  
Binh Phan Khanh Huynh ◽  
Tho Van Nguyen ◽  
Vien My Tran

This study aimed to use charcoal derived from the bamboo and melaleuca produced by traditional kiln applied to sandy soil growing mustard green (Brassica juncea L.). The charcoals were applied at three ratio (1%,2%, and 3%, which correspond to 10, 20, and 30 g charcoal/kg soil in pots) and the control treatment without charcoal. Soil properties were investigated including bulk density, pH, electrical conductivity (EC), cation exchange capacity (CEC), organic matter content, total nitrogen, and total phosphorous. The results showed that bulk density decreased in charcoal-treated soils. pH and EC were in the suitable range for plants.Nutrients and CEC of the soil in the charcoal treatment were significantly higher compared with the control (CEC increase 6.8% to 16%; TC increase 80% to 115%; TN increase 37.5 to 75%). Green mustard growing on charcoalamended soil had greater height (higher 3% to 21%), bigger leaves, and higher yield (increase18% to 81%) than those of plants groomed in the control treatment. This study showed the potential of using charcoal as supplying nutrient to the poor soil. Moreover, the abundant of raw material and easy to produce, it is suitable for applying in the Mekong Delta, Viet Nam, and other countries with similar conditions and infrastructure. 


2016 ◽  
Vol 2 (2) ◽  
pp. 37
Author(s):  
B.H. Prasetyo ◽  
N. Suharta ◽  
Subagyo H. ◽  
Hikmatullah Hikmatullah

Ultisols are a major group of marginal soils extensively found in the upland area of Indonesia. To better understand the potential of the Ultisols developed from claystone and sandstone in the Sasamba Integrated Economical Development Area in East Kalimantan, chemical and mineralogical characteristics of 27 Ultisols pedons consisting of 76 topsoil and 118 subsoil samples were investigated. Besides analysis and interpretation of data, relationships of several soil characteristics were constructed using simple regression. The results indicated that Ultisols showed acid to very acid reaction, had low content of organic matter and low base saturation. Soils generally exhibited net negative charge, and the point of zero charge was reached at pH 3.6. Both potential and available phosphates were low, and there was a trend that amorphous aluminum was responsible for phosphate fixation. The low content of exchangeable potassium in topsoil and subsoil indicated a positive correlation with potential potassium. Clay mineral was composed chiefly of kaolinite, with small amounts of illite, vermiculite, and quartz. The domination of kaolinite and low organic matter content causes the soils to have low cation exchange capacity. Soil management in this area should be focused on building up and maintaining soil fertility, and applying appropriate soil conservation techniques to minimize erosion. To obtain sustained productivity, various soil amendments including the use of farm and/or green manure, liming with agricultural lime, and application of rock phosphate and K fertilizers were highly recommended.


2008 ◽  
Vol 53 (No. 5) ◽  
pp. 225-238 ◽  
Author(s):  
N. Finžgar ◽  
P. Tlustoš ◽  
D. Leštan

Sequential extractions, metal uptake by <i>Taraxacum officinale</i>, Ruby&rsquo;s physiologically based extraction test (PBET) and toxicity characteristic leaching procedure (TCLP), were used to assess the risk of Pb and Zn in contaminated soils, and to determine relationships among soil characteristics, heavy metals soil fractionation, bioavailability and leachability. Regression analysis using linear and 2nd order polynomial models indicated relationships between Pb and Zn contamination and soil properties, although of small significance (<i>P</i> < 0.05). Statistically highly significant correlations (<i>P</i> < 0.001) were obtained using multiple regression analysis. A correlation between soil cation exchange capacity (CEC) and soil organic matter and clay content was expected. The proportion of Pb in the PBET intestinal phase correlated with total soil Pb and Pb bound to soil oxides and the organic matter fraction. The leachable Pb, extracted with TCLP, correlated with the Pb bound to carbonates and soil organic matter content (<i>R</i><sup>2</sup> = 69%). No highly significant correlations (<i>P</i> < 0.001) for Zn with soil properties or Zn fractionation were obtained using multiple regression.


2017 ◽  
Vol 30 (2) ◽  
pp. 343-352 ◽  
Author(s):  
JOSÉ DE SOUZA OLIVEIRA FILHO ◽  
MARCOS GERVASIO PEREIRA ◽  
BOANERGES FREIRE DE AQUINO ◽  
THALES VINÍCIUS DE ARAÚJO VIANA

ABSTRACT The objective of this study was to evaluate the adsorption of phosphorus (P) and changes in the concentrations of organic and inorganic forms of P in a Neossolo Quartzarênico (Typic Quartzipsamment) after 9 years of successive cultivation with sugar cane without burning to harvest. Therefore, two areas, one in which cane sugar was planted and a native forest reference area, located in the municipality of Paraipaba-CE, were selected. In each area, samples were collected at depths of 0−0.025, 0.025−0.05, 0.05−0.10, 0.10−0.20, and 0.20−0.30 m, and the levels of organic (Po) and inorganic (Pi) phosphorus obtained by sequential extraction, the remaining phosphorus, and the maximum adsorption capacity of phosphorus by the soil were determined. In general, the permanence of straw on the soil surface under sugarcane cultivation promoted the maintenance of Po levels in the surface layers of the profile. The Po accumulated predominantly in the Po fraction extracted with sodium bicarbonate in both areas. Regarding the Pi content, changes were more evident during cultivation due to the effect of successive phosphate fertilizer applications. The fraction extracted with 0.1 mol L -1 sodium hydroxide was the most representative, with the highest levels of P uptake. P adsorption was influenced by the initial content of the nutrient in the soil and no relationship between P adsorption and organic matter content was observed. The highest level of adsorption was observed in the bottom layer of the forest area (133.3 mg kg -1) and the lowest level of adsorption was observed on the surface layer of the area under sugarcane cultivation (59.5 kg mg-1).


2021 ◽  
Author(s):  
Maira Kussainova ◽  
Rıdvan Kızılkaya

Abstract In this study, the yield and nutrient content of wheat (Triticum aestivum L.) grown in greenhouse conditions and soil microbiological properties were investigated. Inoculating Amycolatopsis strains, including A.magusensis DSM 45510T, A.orientalis DSM 40040T, and A.azurea DSM 43854T was considered. The mixture of wheat straw (WS) was used to increase soil organic matter content by 5%. It was determined that the grain and straw yield of wheat increased significantly (P < 0.001) in inoculation with Amycolatopsis strains in soils without WS. However, inoculation with Amycolatopsis strains in soil with WS significantly decreased grain and straw of wheat yield. Also, it was found that soil microbial biomass and soil basal respiration (SBR) increased in inoculation with Amycolatopsis strains in both soils with and without WS. While it was established that Cmic:Corg ratio of the control group in the soil samples at the end of the harvest was 1.23, infusing with Amycolatopsis strains was observed to be around 2.95–3.31. Moreover, inoculation with Amycolatopsis strains in soils with WS varied between 0.32–0.40. In the same way, it was determined the microbial metabolic quotient (qCO2) was 2.58 in the control group. This meaning was between 5.67–5.82 in infusing with Amycolatopsis strains and 6.04–6.41 in inoculating with Amycolatopsis strains in soils mixed with ground wheat stalk. As a result, it suggested that the yield of wheat could be increased inoculation with A.magusensis, A.orientalis, and A.azurea, from Amycolatopsis strains, in soils with low soil organic matter content and soils that cannot be shown an increment in terms of organic matter content.


1970 ◽  
Vol 20 (2) ◽  
pp. 173-182
Author(s):  
KF Akhter ◽  
ZH Khan ◽  
MS Hussain ◽  
AR Mazumder

The seasonally flooded soils of Bangladesh are unique in respect of several specific characteristics and contribute toward producing bulk of its staple food - mainly rice. Having fine texture these soils are similar to the “paddy soils” of Southeast Asian floodplains and have high production potential under proper management. Six representative soil series, viz. Arial, Debidwar, Naraibag, Jalkundi, Siddirganj and Tippera from the central region of Bangladesh have been studied to evaluate some of their intrinsic physico-chemical properties and their sustainable management requirements. These soils are slightly acidic to neutral and are negatively charged with ΔpH values ranging between –0.2 and –1.2. The organic matter content in the surface soil is relatively low that decreases steadily with depth. The cation exchange capacity (CEC) of the soils varies on the basis of their clay and organic matter contents while base saturation per cent (BSP) is high. The contents of available N, P, K and S and DTPA-extractable Fe, Mn, Cu and Zn in soils are moderate and are commensurate with the contents of colloidal fractions. These soils receive several mineral nutrients annually with the sediments deposited during the monsoon floods. The characteristics like organic matter content, particle size distribution, CEC, pH and BSP that have important management implications have been discussed. Key words: Seasonally flooded soils; Physical and chemical attributes; Management implications DOI: http://dx.doi.org/10.3329/dujbs.v20i2.8978 DUJBS 2011; 20(2): 173-182


Weed Science ◽  
1994 ◽  
Vol 42 (4) ◽  
pp. 629-634 ◽  
Author(s):  
Blake A. Brown ◽  
Robert M. Hayes ◽  
Donald D. Tyler ◽  
Thomas C. Mueller

Fluometuron adsorption and degradation were determined in soil collected at three depths from no-till + no cover, conventional-till + no cover, no-till + vetch cover, and conventional-till + vetch cover in continuous cotton. These combinations of tillage + cover crop + soil depth imparted a range of organic matter and pH to the soil. Soil organic matter and pH ranged from 0.9 to 2.5% and from 4.7 to 6.5, respectively. Fluometuron adsorption was affected by soil depth, tillage, and cover crop. In surface soils (0 to 4 cm), fluometuron adsorption was greater in no-till + vetch plots than in conventional-tilled + no cover plots. Soil adsorption of fluometuron was positively correlated with organic matter content and cation exchange capacity. Fluometuron degradation was not affected by adsorption, and degradation empirically fit a first-order model. Soil organic matter content had no apparent effect on fluometuron degradation rate. Fluometuron degradation was more rapid at soil pH > 6 than at pH ≤ 5, indicating a potential shift in microbial activity or population due to lower soil pH. Fluometuron half-life ranged from 49 to 90 d. These data indicate that tillage and cover crop may affect soil dissipation of fluometuron by altering soil physical and chemical properties that affect fluometuron degrading microorganisms or bioavailability.


Processes ◽  
2020 ◽  
Vol 8 (9) ◽  
pp. 1109
Author(s):  
Mantas Rubežius ◽  
Kęstutis Venslauskas ◽  
Kęstutis Navickas ◽  
Rolandas Bleizgys

Anaerobic digestion of poultry manure is a potentially-sustainable means of stabilizing this waste while generating biogas. However, technical, and environmental protection challenges remain, including high concentrations of ammonia, low C/N ratios, limited digestibility of bedding, and questions about transformation of nutrients during digestion. This study evaluated the effect of primary biological treatment of poultry manure on the biogas production process and reduction of ammonia emissions. Biogas yield from organic matter content in the aerobic pretreatment groups was 13.96% higher than that of the control group. Biogas production analysis showed that aerobic pretreatment of poultry manure has a positive effect on biogas composition; methane concentration increases by 6.94–7.97% after pretreatment. In comparison with the control group, NH3 emissions after aerobic pretreatment decreased from 3.37% (aerobic pretreatment without biological additives) to 33.89% (aerobic pretreatment with biological additives), depending on treatment method.


2006 ◽  
Vol 63 (2) ◽  
pp. 153-160 ◽  
Author(s):  
Raquel Ghini ◽  
Marcelo Augusto Boechat Morandi

Crop management may modify soil characteristics, and as a consequence, alter incidence of diseases caused by soilborne pathogens. This study evaluated the suppressiveness to R. solani in 59 soil samples from a microbasin. Soil sampling areas included undisturbed forest, pasture and fallow ground areas, annual crops, perennial crops, and ploughed soil. The soil samples were characterized according to abiotic variables (pH; electrical conductivity; organic matter content; N total; P; K; Ca; Mg; Al; H; S; Na; Fe; Mn; Cu; Zn; B; cation exchange capacity; sum of bases and base saturation) and biotic variables (total microbial activity evaluated by the CO2 evolution and fluorescein diacetate hydrolysis; culturable bacterial, fungal, actinomycetes, protozoa, fluorescent Pseudomonas and Fusarium spp. communities). The contribution and relationships of these variables to suppression to R. solani were assessed by path analysis. When all samples were analyzed together, only abiotic variables correlated with suppression of R. solani, but the entire set of variables explained only 51% of the total variation. However, when samples were grouped and analyzed by vegetation cover, the set of evaluated variables in all cases accounted for more than 90% of the variation in suppression of the pathogen. In highly suppressive soils of forest and pasture/fallow ground areas, several abiotic variables and fluorescein diacetate hydrolysis correlated with suppression of R. solani and the set of variables explained more than 98% of suppressiveness.


Sign in / Sign up

Export Citation Format

Share Document