scholarly journals Assessment of Seasonal Variability of Extreme Temperature in Mainland China under Climate Change

2021 ◽  
Vol 13 (22) ◽  
pp. 12462
Author(s):  
Wei-Xiong Yan ◽  
Jun-Fang Zhao ◽  
Jian-Ping Li ◽  
Yun-Xia Wang

Some studies have suggested that variations in the seasonal cycle of temperature and season onset could affect the efficiency in the use of radiation by plants, which would then affect yield. However, the study of the temporal variation in extreme climatic variables is not sufficient in China. Using seasonal trend analysis (STA), this article evaluates the distribution of extreme temperature seasonality trends in mainland China, describes the trends in the seasonal cycle, and detects changes in extreme temperature characterized by the number of hot days (HD) and frost days (FD), the frequency of warm days (TX90p), cold days (TX10p), warm nights (TN90p), and cold nights (TN10p). The results show a statistically significant positive trend in the annual average amplitudes of extreme temperatures. The amplitude and phase of the annual cycle experience less variation than that of the annual average amplitude for extreme temperatures. The phase of the annual cycle in maximum temperature mainly shows a significant negative trend, accounting for approximately 30% of the total area of China, which is distributed across the regions except for northeast and southwest. The amplitude of the annual cycle indicates that the minimum temperature underwent slightly greater variation than the maximum temperature, and its distribution has a spatial characteristic that is almost bounded by the 400 mm isohyet, increasing in the northwest and decreasing in the southeast. In terms of the extreme air temperature indices, HD, TX90p, and TN90p show an increasing trend, FD, TX10p, and TN10p show a decreasing trend. They are statistically significant (p < 0.05). This number of days also suggests that temperature has increased over mainland China in the past 42 years.

2021 ◽  
Author(s):  
Weixiong Yan ◽  
Junfang Zhao ◽  
Jianping Li ◽  
Yuanxia Wang

Abstract Grain yield may be affected in the future by climate change. Some studies have suggested that variations in the seasonal cycle of temperature and season onset could affect the efficiency in the use of radiation by plants, which would then affect yield. However, the study of the temporal variation in extreme climatic variables is not sufficient in China. Therefore, this article evaluates the distribution of extreme temperature seasonality trends in mainland China, describes the trends in the seasonal cycle, and detects changes in extreme temperature characterized by the number of hot days (HD), and frost days (FD) and the frequency of warm days (Tx90p), cold days (Tx10p), warm nights (Tn90p) and cold nights (Tn10p). All data are from the EAR5 reanalysis for the 1979-2020 periods.The results show a statistically significant positive trend in the annual average amplitudes (A0) of extreme temperatures. The change in Txmax was the smallest, but it also accounted for 84.5% of the total area. The annual amplitude (A1) and phase (F1) experienced less variation than A0 for extreme temperatures in mainland China. A1 of the maximum temperature decreased significantly on the Tibetan Plateau and increased significantly in the Tianshan Mountains and Jungar Basin (mainly Taxman). F1 of the maximum temperature exhibit a negative trend in approximately 30% of mainland China, and the trend appeared in some regions except in the Northeast and Southwest. Although A1 of the minimum temperature was not as large as that of the maximum temperature, its distribution was very characteristic and it was almost bounded by the 400 mm isohyet, increasing in the Northwest and decreasing in the Southeast. In terms of the number of days, there was an increase in HD, Tx90p, and Tn90p, as well as a decrease in FD, Tx10p, and Tn10p. This number of days also indicates that temperature has increased over mainland China in the past 42 years.


Atmosphere ◽  
2020 ◽  
Vol 11 (11) ◽  
pp. 1171
Author(s):  
Junju Zhou ◽  
Jumei Huang ◽  
Xi Zhao ◽  
Li Lei ◽  
Wei Shi ◽  
...  

The increase in the frequency and intensity of extreme weather events around the world has led to the frequent occurrence of global disasters, which have had serious impacts on the society, economic and ecological environment, especially fragile arid areas. Based on the daily maximum temperature and daily minimum temperature data of four meteorological stations in Shiyang River Basin (SRB) from 1960 to 2015, the spatio-temporal variation characteristics of extreme temperature indices were analyzed by means of univariate linear regression analysis, Mann–Kendall test and correlation analysis. The results showed that the extreme temperatures warming indices and the minimum of daily maximum temperature (TXn) and the minimum of daily minimum temperature (TNn) of cold indices showed an increasing trend from 1960 to 2016, especially since the 1990s, where the growth rate was fast and the response to global warming was sensitive. Except TXn and TNn, other cold indices showed a decreasing trend, especially Diurnal temperature (DTR) range, which decreased rapidly, indicating that the increasing speed of daily min-temperature were greater than of daily max-temperature in SRB. In space, the change tendency rate of the warm index basically showed an obvious altitude gradient effect that decreased with the altitude, which was consistent with Frost day (FD0) and Cool nights (TN10p) in the cold index, while Ice days (ID0) and Cool days (TX10p) are opposite. The mutation of the cold indices occurred earlier than the warm indices, illustrating that the cold indices in SRB were more sensitive to global warming. The change in extreme temperatures that would have a significant impact on the vegetation and glacier permafrost in the basin was the result of the combined function of different atmospheric circulation systems, which included the Arctic polar vortex, Western Pacific subtropical high and Qinghai-tibet Plateau circulation.


MAUSAM ◽  
2021 ◽  
Vol 71 (3) ◽  
pp. 423-430
Author(s):  
AL-TIMIMI YASEEN K ◽  
AL-LAMI ALAA M ◽  
AL-SHAMARTI HASANAIN K A ◽  
AL-MAAMORY SAMIR K.

Climate change has negative impacts on different sectors. Generally, data display significant changes in the properties of extreme events. Daily minimum and maximum temperatures data for 36 meteorological stations of Iraq (1981-2017) were analysed to detect the significant trend and the magnitude trend extreme temperature indices over the 36-year period. RClimDex was used to compute indices and simple regression method was used for trend analysis. The results show that all stations displayed a significant increase in the annual average of maximum value of maximum temperature TXx and the annual average of maximum value of minimum temperature TNx. For the annual diurnal temperature range, about 81.6% of stations have a decreasing trend, while 18.4% have an increasing trend. The TXn index shows 78.9 has a decreasing trend for all stations except 5.3% have no change and 15.8% have an increasing trend. In contrast, the represent of TNn index demonstrate a decreasing trend for 63.2% of stations and 31.6% have an increasing trend fall all stations. Analysis of temperature extremes revealed a significant increase in most stations, which also shows that the country has seen a trend of warming.


Atmosphere ◽  
2021 ◽  
Vol 13 (1) ◽  
pp. 19
Author(s):  
Hongju Chen ◽  
Jianping Yang ◽  
Yongjian Ding ◽  
Chunping Tan ◽  
Qingshan He ◽  
...  

In this study, the instability of extreme temperatures is defined as the degree of perturbation of the spatial and temporal distribution of extreme temperatures, which is to show the uncertainty of the intensity and occurrence of extreme temperatures in China. Based on identifying the extreme temperatures and by analyzing their variability, we refer to the entropy value in the entropy weight method to study the instability of extreme temperatures. The results show that TXx (annual maximum value of daily maximum temperature) and TNn (annual minimum value of daily minimum temperature) in China increased at 0.18 °C/10 year and 0.52 °C/10 year, respectively, from 1966 to 2015. The interannual data of TXx’ occurrence (CTXx) and TNn’ occurrence (CTNn), which are used to identify the timing of extreme temperatures, advance at 0.538 d/10 year and 1.02 d/10 year, respectively. In summary, extreme low-temperature changes are more sensitive to global warming. The results of extreme temperature instability show that the relative instability region of TXx is located in the middle and lower reaches of the Yangtze River basin, and the relative instability region of TNn is concentrated in the Yangtze River, Yellow River, Langtang River source area and parts of Tibet. The relative instability region of CTXx instability is distributed between 105° E and 120° E south of the 30° N latitude line, while the distribution of CTNn instability region is more scattered; the TXx’s instability intensity is higher than TNn’s, and CTXx’s instability intensity is higher than CTNn’s. We further investigate the factors affecting extreme climate instability. We also find that the increase in mean temperature and the change in the intensity of the El Niño phenomenon has significant effects on extreme temperature instability.


2021 ◽  
Author(s):  
Angana Borah ◽  
Udit Bhatia

&lt;p&gt;Global studies of extreme temperature suggest that in recent times there has been an increase in frequency and intensity for hot temperature and decrease for cold temperatures&amp;#160; while a few others show an increase in both warm and cold extremes in the last decade of the twentieth century. Previous research on large scale climate projections show an amplified increase in the highest percentile of maxima and minima, with respect to the lowest percentiles of temperature extremes. The indices recommended by the Expert Team for Climate Change Detection Monitoring and Indices (ETCCDMI) to analyse trends of extreme climate are pertinent to policy and decision making with regard to impact and adaptation studies.&amp;#160;While literature is abundant with large scale evaluation of trends in extreme temperatures, there is a want of studies in the regional patterns and distribution of temperature extremes in India. Although India is widely known as a tropical country, the diversities found in the topography of the regions from north to south and east to west, renders microclimate unique to each region leading to disparate inter-annual temperature ranges across the country. So, it is important to explore how regional trends in the different climatic zones of the Indian subcontinent correspond with each other in view of its unique climatic regimes. A comprehensive analysis of temperature extremes in the urban agglomerates and their suburban and rural counterparts is relatively unexplored for India. The results offer insights on the change in the percentile based indices recommended by the IPCC as well as summer and winter maximas and minimas for the entire India over the last several decades.&amp;#160;The frequency and intensity of extreme temperatures characterised by number of days less than 10th percentile and more than 90th percentile, and minimum annual minimum temperature and maximum annual maximum temperature respectively, of the distribution over the last six decades have been assessed. The findings of this study suggests that warmer extremes follow an increasing trend, while the colder extremes exhibit no significant trend. However, the trends appear to be spatially coherent irrespective of the extent of urbanization.&amp;#160; &amp;#160;Additionally, change in maximum and minimum percentiles of summer and winter temperatures are assessed between the first half of the last century and &amp;#160;the later half of the last century, for the entire country. It was found that change in highest percentiles in both summer and winter minima is more pronounced than lowest percentiles, while increase in highest percentile is more amplified for summer and winter maxima.&amp;#160;&lt;/p&gt;&lt;p&gt;&amp;#160;&lt;/p&gt;


2020 ◽  
Author(s):  
Francisco Javier Acero ◽  
Javier Portero ◽  
José Agustín García

&lt;p&gt;Heat waves are meteorological events exceptionally extremes that are increasing in frequency, duration and intensity. The Iberian Peninsula is characterized in the last decades by an increase in the trend of extreme temperature events and its consequences are important not only for the effects over the population but also for agriculture and biodiversity. The main objective in this study is to analyse future trends over the 21&lt;sup&gt;st&lt;/sup&gt; century for extreme temperature using two events: heat waves and warm events. These are defined as the period of at least two consecutive days with temperatures over a certain threshold, the 95th percentile for heat waves and the 75th percentile for warm events. For this purpose, 14 different regionalized dynamic climate projections dataset are used. Firstly, to choose the better climate models, the common period 1961-2000 is used to compare with observational data obtained from SPAIN02 grid dataset. Once the better climate models are selected, trends in both events are analysed for the past (1961-2000) and the future (2011-2099). To estimate trends, Mann-Kendall test and Theil-Sen estimator were applied. Mann-Kendall test returns the significance of the trends for each grid point, while Theil-Sen estimator estimates the value of that trend. Moreover, max-stables processes are used to compare spatial dependence between dynamic projections. The results for the comparison period show that maximum temperature and moderate values of the maximum temperature are increasing smoothly, while low values of maximum temperatures are increasing even faster. This means that the variability of extreme temperature is decreasing, especially in the Mediterranean area of the Iberian Peninsula. For the 21&lt;sup&gt;st&lt;/sup&gt; century, results reveal a significant positive trend in low values of the maximum temperatures that increases throughout the century over the whole study area. Warm events show a significant positive trend in frequency and intensity. This trend drastically increases from 2050 onwards.&lt;/p&gt;


2014 ◽  
Vol 27 (6) ◽  
pp. 2340-2360 ◽  
Author(s):  
Guoyu Ren ◽  
Yaqing Zhou

Abstract Understanding the long-term change of extreme temperature events is important to the detection and attribution of climate change. It is unclear, however, how much effect urbanization has had on trends of the extreme temperature indices series constructed based on the commonly used datasets on a subcontinental scale. Applying a homogenized daily temperature dataset of the national reference climate stations and basic meteorological stations, and a rural station network previously developed, urbanization effects on trends of extreme temperature indices in mainland China for the time period 1961–2008 are evaluated. It is found that 1) the country-averaged annual- and seasonal-mean extreme temperature indices series generally experience statistically significant trends; 2) annual-mean urbanization effects in the country as a whole are statistically significant for daily minimum temperature (Tmin), maximum temperature (Tmax), and mean temperature of Tmin and Tmax (Tavg), reaching 0.070°, 0.023°, and 0.047°C (10 yr)−1, respectively, with the largest values for annual-mean Tmin occurring in north China; 3) annual- and seasonal-mean urbanization effects for the declining diurnal temperature range (DTR) are highly significant, and the largest seasonal-mean DTR decline because of urbanization occurs in winter and spring; 4) annual-mean urbanization effects for the lowest Tmin, summer days, tropical nights, and frost days series are significant, but an insignificant urbanization effect is detected for icing days series; 5) urbanization has led to a highly significant decline of annual cold nights at a rate of −1.485 days (10 yr)−1 and a highly significant increase of annual warm nights at a rate of 2.264 days (10 yr)−1. Although urbanization effects are also significant for cold days and warm days, they are relatively smaller, and 6) the smallest absolute values of annual-mean urbanization effects for most of the indices series are found to dominantly appear during 1966–76, a well-known deurbanization period resulting from the Cultural Revolution.


Atmosphere ◽  
2020 ◽  
Vol 11 (12) ◽  
pp. 1345
Author(s):  
Do-Hyun Kim ◽  
Ho-Jeong Shin ◽  
Il-Ung Chung

We investigated the effect of artificial marine cloud brightening on extreme temperatures over East Asia. We used simulation data from five global climate models which have conducted the GeoMIP G4cdnc experiment. G4cdnc was designed to simulate an increase in the cloud droplet number concentration of the global marine lower clouds by 50% under the greenhouse gas forcing of the RCP4.5 scenario. G4cdnc decreased the net radiative forcing in the top of the atmosphere more over the ocean, alleviating the rise in mean temperature under RCP4.5 forcing. For extreme temperatures, G4cdnc reduced both the monthly minimum of daily minimum temperature (TNn) and monthly maximum of daily maximum temperature (TXx). The response of TNn was higher than that of TXx, especially in the winter, over the Sea of Okhotsk and the interior of the continent. This spatial heterogeneity and seasonality of the response were associated with sea ice–albedo and snow–albedo feedbacks. We also calculated the efficacy of warming mitigation as a measure of the relative effect of geoengineering. The efficacy for TXx was higher than that for TNn, opposite to the absolute effect. After the termination of geoengineering, both TNn and TXx tended to rapidly revert to their trend under the RCP4.5 forcing.


2019 ◽  
pp. 155-161 ◽  
Author(s):  
Ivan Beltran

Environmental temperature has fitness consequences on ectotherm development, ecology and behaviour. Amphibians are especially vulnerable because thermoregulation often trades with appropriate water balance. Although substantial research has evaluated the effect of temperature in amphibian locomotion and physiological limits, there is little information about amphibians living under extreme temperature conditions. Leptodactylus lithonaetes is a frog allegedly specialised to forage and breed on dark granitic outcrops and associated puddles, which reach environmental temperatures well above 40 ˚C. Adults can select thermally favourable microhabitats during the day while tadpoles are constrained to rock puddles and associated temperature fluctuations; we thus established microhabitat temperatures and tested whether the critical thermal maximum (CTmax) of L. lithonaetes is higher in tadpoles compared to adults. In addition, we evaluated the effect of water temperature on locomotor performance of tadpoles. Contrary to our expectations, puddle temperatures were comparable and even lower than those temperatures measured in the microhabitats used by adults in the daytime. Nonetheless, the CTmax was 42.3 ˚C for tadpoles and 39.7 ˚C for adults. Regarding locomotor performance, maximum speed and maximum distance travelled by tadpoles peaked around 34 ˚C, approximately 1 ˚C below the maximum puddle temperatures registered in the puddles. In conclusion, L. lithonaetes tadpoles have a higher CTmax compared to adults, suggesting a longer exposure to extreme temperatures that lead to maintain their physiological performance at high temperatures. We suggest that these conditions are adaptations to face the strong selection forces driven by this granitic habitat.


2021 ◽  
Vol 164 (3-4) ◽  
Author(s):  
Xiaoying Xue ◽  
Guoyu Ren ◽  
Xiubao Sun ◽  
Panfeng Zhang ◽  
Yuyu Ren ◽  
...  

AbstractThe understanding of centennial trends of extreme temperature has been impeded due to the lack of early-year observations. In this paper, we collect and digitize the daily temperature data set of Northeast China Yingkou meteorological station since 1904. After quality control and homogenization, we analyze the changes of mean and extreme temperature in the past 114 years. The results show that mean temperature (Tmean), maximum temperature (Tmax), and minimum temperature (Tmin) all have increasing trends during 1904–2017. The increase of Tmin is the most obvious with the rate of 0.34 °C/decade. The most significant warming occurs in spring and winter with the rate of Tmean reaching 0.32 °C/decade and 0.31 °C/decade, respectively. Most of the extreme temperature indices as defined using absolute and relative thresholds of Tmax and Tmin also show significant changes, with cold events witnessing a more significant downward trend. The change is similar to that reported for global land and China for the past six decades. It is also found that the extreme highest temperature (1958) and lowest temperature (1920) records all occurred in the first half of the whole period, and the change of extreme temperature indices before 1950 is different from that of the recent decades, in particular for diurnal temperature range (DTR), which shows an opposite trend in the two time periods.


Sign in / Sign up

Export Citation Format

Share Document