scholarly journals Potential Human Exposure to Mercury (Hg) in a Chlor-Alkali Plant Impacted Zone: Risk Characterization Using Updated Site Assessment Data

2021 ◽  
Vol 13 (24) ◽  
pp. 13816
Author(s):  
Symbat Kismelyeva ◽  
Rustem Khalikhan ◽  
Aisulu Torezhan ◽  
Aiganym Kumisbek ◽  
Zhanel Akimzhanova ◽  
...  

Industrial activities have resulted in severe environmental contamination that may expose rural and urban populations to unacceptable health risks. For example, chlor-alkali plants (CAPs) have historically contributed mercury (Hg) contamination in different environmental compartments. One such site (a burden from the Soviet Union) is located in an industrial complex in Pavlodar, Kazakhstan. Earlier studies showed the CAP operating in the second half of the twentieth century caused elevated Hg levels in soil, water, air, and biota. However, follow-up studies with thorough risk characterization are missing. The present study aims to provide a detailed risk characterization based on the data from a recent site assessment around the former CAP. The ⅀HI (hazard index) ranged from 9.30 × 10−4 to 0.125 (deterministic method) and from 5.19 × 10−4 to 2.54 × 10−2 (probabilistic method). The results indicate acceptable excess human health risks from exposure to Hg contamination in the region, i.e., exposure to other Hg sources not considered. Air inhalation and soil ingestion pathways contributed to the highest ⅀HI values (up to 99.9% and 92.0%, respectively). The residential exposure scenario (among four) presented the greatest human health risks, with ⅀HI values ranging from 1.23 × 10−2 to 0.125. Although the local urban and rural population is exposed to acceptable risks coming from exposure to Hg-contaminated environmental media, an assessment of contamination directly on the former CAP site on the industrial complex could not be performed due to access prohibition. Furthermore, the risks from ingesting contaminated fish were not covered as methyl-Hg was not targeted. An additional assessment may be needed for the scenarios of exposure of workers on the industrial complex and of the local population consuming fish from contaminated Lake Balkyldak. Studies on the fate and transport of Hg in the contaminated ecosystem are also recommended considering Hg methylation and subsequent bioaccumulation in the food chain.

2017 ◽  
Vol 25 (2) ◽  
pp. 127-144
Author(s):  
Mohamed Nouri ◽  
Taoufik El Rasafi ◽  
Abdelmajid Haddioui

Abstract The concentrations of metals were determined in soil samples collected in Ait Ammar (Oued Zem, Morocco). The mean Cd, Cr, Cu, Fe, Pb and Zn contents in the mining topsoil samples were: 2.12, 135, 34.9, 214, 9.13 and 90.8 mg kg−1, respectively. Human health risks developed from metal ingestion, dermal absorption and inhalation of soils were also evaluated. For non-carcinogenic risks, united hazard index (HI) values for children surpassed the safe level (HI=1) for Cr (13.1). Values for HI in adults (1.74) also surpassed the safe level for Cr. The HI values for Pb and Cd for children were 0.69 and 0.68, respectively. Cancer risk due to Cr surpassed the tolerable range (1E-06 to1E-04) for children (1.05E-03) and for adults (1.42E-04). Cancer risks due to Pb and Cd were within acceptable ranges for both children and adults. Furthermore, oral ingestion of soil particles contributed more highly to both carcinogenic and non-carcinogenic risk from Cr than either dermal absorption or inhalation in both children and adults.


2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Igor D. de Souza ◽  
Elaine S. P. Melo ◽  
Valdir Aragão Nascimento ◽  
Hugo S. Pereira ◽  
Kassia R. N. Silva ◽  
...  

Information on the content of medicinal plants used in the treatment of diabetes is scarce in the literature. The objectives of this study were to determine the levels of macroelements and microelements in three different medicinal plant species including the dry samples and teas from Bauhinia forficata, Eleusine Indica, and Orthosiphon stamineus and assess the human health risks of ingestion of the tea. The content of the dry samples and teas was obtained using the technique of inductively coupled plasma optical emission spectrometry (ICP OES) after microwave digestion procedure. The hazard quotient (HQ) method was used to access the human health risks posed by heavy metal through tea consumption. The results revealed the presence of K, Mg, Na, P, Al, Fe, Zn, Mn, Cu, Ni, and Se in dry samples and plant teas. The dry plants have high concentration of K and P. All dry plants contain Mg, Na, Al, Fe, Mn, Ni, Zn, and Cu above the limit permissible level set by the World Health Organization (WHO). All the hazard index (HI) values in plant teas were found to be within safe limits for human consumption ( HI < 1 ). The plants may have possible action benefits when used in popular medicine. However, the ingestion through capsules prepared by enclosing a plant powder or teas can be harmful to the health of diabetics. The prescription of this plant for the treatment of diabetes should be treated with caution.


2019 ◽  
Vol 9 (22) ◽  
Author(s):  
Godfred Darko ◽  
Kwadwo Owusu Boakye ◽  
Marian Asantewaa Nkansah ◽  
Opoku Gyamfi ◽  
Eugene Ansah ◽  
...  

Background. Anthropogenic activities such as artisanal mining pose a major environmental health concern due to the potential for discharge of toxic metals into the environment. Objectives. To determine the distribution and pollution patterns of arsenic (As), iron (Fe), nickel (Ni), cobalt (Co), chromium (Cr), manganese (Mn), copper (Cu) and zinc (Zn) in the topsoil of a mining community in Ghana, along with potential human health risks and in vitro bioaccessibility. Methods. Concentrations of metals were determined using X-ray fluorescence techniques and validated using inductively coupled plasma-mass spectrometry. Results. Concentrations of the metals in topsoil were in the order of magnitude of Cu (31.38 mg/kg) &lt; Ni (45.39 mg/kg) &lt; As (59.66 mg/kg) &lt; Cr (92.87 mg/kg) &lt; Zn (106.98 mg/kg) &lt; Mn (1195.49 mg/kg) &lt; Fe (30061.02 mg/kg). Geo-statistical and multivariate analyses based on hazard indices including contamination, ecological risks, geo-accumulation, and pollution load suggest that the topsoils are contaminated in the study area. The potential ecological risk index (PERI) showed high ecological risk effects (PERI=269.09), whereas the hazard index (1×10−7) and carcinogenic risk index (1×10−5) indicated low human health risks. Elevated levels of As, Cr, Ni, and Zn were found to emanate from anthropogenic origins, whereas Fe, Mn, and Cu levels were attributed mainly to geological and atmospheric depositions. Physicochemical parameters (pH, electrical conductivity and total organic carbon) showed weak positive correlations to the metal concentrations. Elemental bioaccessibility was variable, decreasing in the order of Mn (35± 2.9%) &gt; Cu (29± 2.6%) &gt; Ni (22± 1.3%) &gt; As (9± 0.5%) &gt; Cr (4± 0.6%) &gt; Fe (2± 0.4%). Conclusions. Incorporation of in-vitro bioaccessibility into the risk characterization models resulted in a hazard index of less than 1, implying low human health risks. However, due to accumulation effects of the metals, regular monitoring is required. Competing Interests. The authors declare no competing financial interests.


2021 ◽  
Author(s):  
Md Abdullah-hil Maruf ◽  
Nusrat Jahan Punom ◽  
Badhan Saha ◽  
Mohammad Moniruzzaman ◽  
Priyanka Dey Suchi ◽  
...  

Abstract In this study, pangas and feed samples were analyzed to estimate the levels of metallic elements and to profile the human health risks due to consumption of contaminated fish. This investigation confirmed significant variations in heavy metal concentrations among different tissues of pangas in the order of Ni> Cu> Pb> Cd> Cr in pre-monsoon; and Ni> Cd= Cu> Pb= Cr in post-monsoon. Considerably higher concentrations of Pb, Cu and Cr were estimated in liver; and Cd and Ni were detected in muscle than other organs (p>0.05). Statistically significant higher amount of Cd, Ni, and Cu were observed in pre-monsoon than post-monsoon. Furthermore, three metal pairs showed significant association (Pb-Ni and Pb-Cu involved positively; Cd-Ni acted negatively). In pre-monsoon, Cd, Pb, Ni, Cu concentrations of feed significantly differed than pangas contents; whereas only Cu varied during the post-monsoon. Regression analysis revealed the significant effect of Ni content in feed on the Cu deposition of pangas (p-value 0.027, that was <0.05). For the assessment of potential human health risk of the studied metals, estimated daily intake (EDI), target hazard quotient (THQ), hazard index (HI) and carcinogenic risk (CR) indices were calculated. Studied EDI indicated that an average adult ingested a higher amount of Ni and Cu than the recommended intake limit. Nevertheless, only the higher EDI of Ni increases the value of THQ and HI than standard limit indicates adverse non-carcinogenic risk. However, lower CR of Pb confirmed no serious health hazard due to the ingestion of pangas. Factor analysis through principal component and cluster analysis suggested that higher concentrations of Pb and Ni may regulate by the feed used, geochemical properties or rapid industrialization in the study area. A proper monitoring for controlling the quality of fish feed with sustainable planning for industrialization could secure the booming of pangasius aquaculture in Bangladesh.


2013 ◽  
Vol 244-245 ◽  
pp. 225-239 ◽  
Author(s):  
Mojgan Yeganeh ◽  
Majid Afyuni ◽  
Amir-Hosein Khoshgoftarmanesh ◽  
Loghman Khodakarami ◽  
Manouchehr Amini ◽  
...  

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Abdur Rahman ◽  
N. C. Mondal ◽  
K. K. Tiwari

AbstractAn increased nitrate (NO3−) concentration in groundwater has been a rising issue on a global scale in recent years. Different consumption mechanisms clearly illustrate the adverse effects on human health. The goal of this present study is to assess the natural and anthropogenic NO3− concentrations in groundwater in a semi arid area of Rajasthan and its related risks to human health in the different groups of ages such as children, males, and females. We have found that most of the samples (n = 90) were influenced by anthropogenic activities. The background level of NO3− had been estimated as 7.2 mg/L using a probabilistic approach. About 93% of nitrate samples exceeded the background limit, while 28% of the samples were beyond the permissible limit of 45 mg/L as per the BIS limits. The results show that the oral exposure of nitrate was very high as compare to dermal contact. With regard to the non-carcinogenic health risk, the total Hazard Index (HITotal) values of groundwater nitrate were an average of 0.895 for males, 1.058 for females, and 1.214 for children. The nitrate health risk assessment shows that about 38%, 46%, and 49% of the samples constitute the non-carcinogenic health risk to males, females, and children, respectively. Children were found to be more prone to health risks due to the potential exposure to groundwater nitrate.


Water ◽  
2021 ◽  
Vol 13 (6) ◽  
pp. 783
Author(s):  
Feifei Chen ◽  
Leihua Yao ◽  
Gang Mei ◽  
Yinsheng Shang ◽  
Fansheng Xiong ◽  
...  

Groundwater is a valuable water source for drinking and irrigation purposes in semiarid regions. Groundwater pollution may affect human health if it is not pretreated and provided for human use. This study investigated the hydrochemical characteristics driving groundwater quality for drinking and irrigation purposes and potential human health risks in the Xinzhou Basin, Shanxi Province, North China. More specifically, we first investigated hydrochemical characteristics using a descriptive statistical analysis method. We then classified the hydrochemical types and analyzed the evolution mechanisms of groundwater using Piper and Gibbs diagrams. Finally, we appraised the groundwater quality for drinking and irrigation purposes using the entropy water quality index (EWQI). We assessed the associated human health risks for different age and sex groups through drinking intake and dermal contact pathways. Overall, we found that (1) Ca-HCO3 and Ca·Mg-HCO3 were the dominant hydrochemical types and were mainly governed by rock weathering and water–rock interactions. (2) Based on the EWQI classifications, 67.74% of the groundwater samples were classified as medium quality and acceptable for drinking purpose. According to the values of sodium adsorption ratio (SAR), residual sodium carbonate (RSC) and soluble sodium percentage (%Na), 90.32% of the samples were suitable for irrigation, while the remaining samples were unfit for irrigation because of the high salinity in the groundwater. (3) Some contaminants in the groundwater, such as NO3−, NO2− and F−, exceeded the standard limits and may cause potential risks to human health. Our work presented in this paper could establish reasonable management strategies for sustainable groundwater quality protection to protect public health.


Sign in / Sign up

Export Citation Format

Share Document