scholarly journals Carbon Footprint Assessment in Nature-Based Conservation Management Estates Using South African National Parks as a Case Study

2021 ◽  
Vol 13 (24) ◽  
pp. 13969
Author(s):  
Paulina A. Phophe ◽  
Mmoto L. Masubelele

Nature-based conservation management (NBCMs) estates are seen as natural solutions to climate change and hence immune to harmful greenhouse gas (GHG) emissions. However, NBCMs, in their daily operations to protect and conserve biodiversity, may result in GHG emissions. These may come as a significant carbon burden. This is the first study based on a literature review to look at the carbon footprint of an entire conservation estate operation and management. South African National Parks (SANParks) aimed to contribute to national targets by reducing their fossil-fuel-generated energy consumption by 2% per year until achieving carbon neutrality. The objectives of this paper were (1) to quantify the SANParks C emissions profile at the organization and individual park level and develop recommendations to sustainably reduce carbon emissions and (2) to suggest alternative scenarios that SANParks could follow to achieve zero energy emissions. The study presented an audit analysis of the emission sources linked to SANParks’ daily activities over a five-year period (2015–2019) using the GHGs protocol corporate accounting and reporting standard methodology. Over the reference period, SANParks emitted an average of 73,732 t of carbon dioxide equivalent (tCO2e) per year. Most emissions came from electricity usage, 40,681 tCO2e (55%), followed by fuel usage for stationary combustion at 26,088 tCO2e (35%), and both account for 90% of SANParks’ total emissions. Results have shown the variation amongst individual parks in GHG emission and intensity ratio among the different parks. Total SANParks emission showed a significant relationship with Scope 2, followed by number of employees, building size, Scope 3, and Scope 1, in order. This work recommends how SANParks estate may reduce their carbon emissions at a national and individual level. SANParks achieved 1% year-on-year energy emissions reduction through its renewable base; however, an ambitious target of 8% would be appropriate for a 1.5 °C future based on the energy scenario planning.

2021 ◽  
Vol 13 (13) ◽  
pp. 7262
Author(s):  
Clara Lenk ◽  
Rosalie Arendt ◽  
Vanessa Bach ◽  
Matthias Finkbeiner

Cities account for 70% of carbon emissions and are therefore a vital driver for climate change. Thus, a city’s main contributing sectors need to be identified. Territorial-based footprints focus on the final energy consumption, which is derived from the stationary and transport sectors. The consumption-based approach is based on consumption data, which are converted into carbon emissions using an input–output model. If the consumption-based approach is applied to an urban district not only emissions in the investigated area are considered, but also those that occur along the supply chain of consumed products in the urban district. The goal of this study was to apply and evaluate two different approaches to calculate an urban district’s carbon footprint to support climate protection management at the local government level. To achieve this goal, these two different approaches were applied to calculate the carbon emissions of the urban district Wedding in Berlin and were compared regarding criteria such as data availability and relevance. The footprints resulted in 400,947 t CO2–eq. for the territorial approach and in 401,371 t CO2–eq. per year for the consumption-based approach, which resulted in 4.61 t CO2–eq and 4.62 t CO2–eq per capita and year, respectively. Methodologically, the two approaches differ significantly, but the total results showed a difference of only 0.1%. Thus, this study cannot verify that the consumption-based approach mostly leads to higher emissions per capita in the Global North. This could be due to lower purchasing power and a higher share of multiple-person households in the relatively poor urban district of Wedding, Berlin. The territorial approach is more suitable to derive measures for local climate action, whereas the consumption-based approach highlights the responsibility of consumers for GHG emissions along the supply chain and the importance of the food sector.


Biomedicine ◽  
2021 ◽  
Vol 41 (4) ◽  
pp. 692-693
Author(s):  
Manjula Shantaram

If one has a passion for the planet, then this is the right time to drastically lower the carbon emissions. A carbon footprint is the total amount of greenhouse gases (including carbon dioxide and methane) that are generated by our actions. The average carbon footprint for a person in the United States is 16 tons, one of the highest rates in the world. Some carbon emissions will probably never be eradicated entirely from certain industries, such as air travel or construction. When emissions cannot be further reduced, carbon offsetting is the next best thing, says Winters (1). Offsetting emissions is paying for or investing in organisations that can extract carbon from the atmosphere to help others reduce their footprint. It could include investing in reforestation projects or new technologies that suck carbon out of the atmosphere and sequester it underground permanently, technologies to replace jet fuel with alternative green fuels, or switching fossil-fuel-powered facilities with hydrogen-powered facilities.    Unless the global economy meets the aims of the Paris Agreement, keeping climate change well below 2°C, the world is expected to suffer extreme weather conditions leading to mass migration and global catastrophe. The argument for global companies to reduce their greenhouse gas (GHG) emissions is clearer than it has ever been. Business operations around the world are now subject to greater climate and transition risks. Consumers are insisting for eco-friendly products and responsible corporate behaviours. Investors are increasingly embracing capital-allocation strategies that take environmental, social, and governance (ESG) issues into account. Policy makers and government organizations are exploring the potential regulation of carbon emissions. The more aggressive the targets, the better the results.   In COP26 climate summit in Glasgow held in November 2021, it was made clear that the current climate crisis has been precipitated by unsustainable lifestyles and wasteful consumption patterns mainly in the developed countries. The world needs to awaken to this reality. Globally, the building and construction sectors account for nearly 40% of global energy-related carbon dioxide emissions in constructing and operating buildings (2). Current building codes address operating energy but do not typically address the impacts of embodied carbon in building materials and products. However, more than half of all GHG emissions is related to materials management (including material extraction and manufacturing) when aggregated across industrial sectors (3).   In order to reduce our carbon footprint, we can start an eco-friendlier life. In winter, instead of heating, insulate the loft and walls which will make sure our home retains heat during the winter and stays cool in summer. By switching to a company that provides electricity from solar, wind, or hydroelectric energy, we can reduce our household emissions. Buy energy efficient electrical appliances. Additionally, make sure to turn off and unplug anything we are not using. It takes energy and resources to process and deliver water to our homes. So, by using less water, we can help the environment and lower our carbon footprint. The food we eat can have a significant impact on the environment. For example, meat and dairy products require a lot of land, water and energy to produce. They also create a lot of methane, a greenhouse gas. Moreover, food shipped from overseas uses a lot more resources than local produce. By eating fewer animal products, especially red meat, (or choosing a plant-based diet) and shopping for locally sourced food, we can make a big difference.  Why not support our local farmers’ market?   Powering empty rooms and office space is a huge energy drain. By making sure we turn off lights and appliances when they are not in use, we can make sure we are not wasting power. we can also request to install automatic, movement-sensing lights and energy-saving LED bulbs to address the issue. It has never been easier to collaborate with others online. Whether through sharing documents using cloud storage or video conferencing instead of travelling, we can reduce our waste and emissions. Try moving away from printed documents where possible, and encourage others to work on their digital skills for the workplace. Cycling and walking are two of the most environmentally friendly ways to travel. And, not only are they good for the planet, but they are also good for our health. If we can, choose to cycle or walk to work where possible. ‘Reduce, reuse, recycle’ is a popular slogan. Companies of all sizes use a host of different products in their day-to-day running. Whether it has things like paper, electronic devices, packaging, or water, it all has a carbon footprint. By reducing the amount of waste, we generate, reusing IT equipment, and recycling waste, we can make a real difference. Single use plastics may be convenient, yet they are fairly dreadful for the environment. Not only do they pollute our waterways and oceans, but they also require energy to produce and recycle. We can stop using things like disposable coffee cups and cutlery to reduce our company’s carbon footprint. Instead of preaching, let us practise and bring a change.


2011 ◽  
Vol 12 (3) ◽  
pp. 263-279 ◽  
Author(s):  
Alan Brent ◽  
Sibbele Hietkamp ◽  
Russell Wise ◽  
Kenney O’Kennedy

The carbon footprint of materials and products is becoming an increasingly important factor in international trade. At present the carbon emissions balance of the South African economy is not well understood, especially the carbon emissions associated with imports and exports. An investigation was done of known economic input-output and life cycle analyses models addressing this shortcoming. The results reveal that South Africa is a major exporter of carbon; at least 129 per cent more carbon is associated with a dollar earned with exports than a dollar spent on imports, and the carbon footprint of the outflows on average, equates 37 per cent of the total carbon emissions of the economy. Such figures have serious policy-related implications in a future where international climate-change trade limitations will become stricter and binding.


2020 ◽  
Vol 6 (2) ◽  
Author(s):  
Amrizarois Ismail

Emisi karbon Gas Rumah Kaca (GRK) yang dihasilkan dalam penyelenggaraan pendidikan di Perguruan Tinggi dapat dikatakan cukup tinggi. Akumulasi karbon menjadi penyebab efek rumah kaca yang berdampak pada peningkatan suhu bumi atau disebut pemanasan global dan menimbulkan bencana ekologis. Pandemi Covid 19 telah memaksa proses belajar di rumah, secara otomatis hal tersebut mendorong adanya jeda dalam penggunaan energi dari alat elektronik dan kendaraan bermotor yang juga berarti terjadi penurunan Emisi GRK dari energi tersebut. Tujuan penelitian ini adalah untuk mengetahui besaran jejak karbon yang dihasilkan selama proses pembelajaran di kampus, sekaligus potensi penurunan Emisi karbon oleh belajar dari rumah. Metode penelitian adalah kuantitatif melalui pendekatan berbasis analisis jejak karbon sebagai instrumen untuk menghitung jumlah karbondioksida (CO2) dari kegiatan manusia. Selanjutnya dilakukan konversi nilai energi listrik (KWh) dan bahan bakar minyak (Liter/jam) menjadi besaran carbon GRK yang dihasilkan (CO2 α) dari kegiatan belajar/perkuliahan secara tatap muka dalam kelas. Hasil penelitian menunjukkan besaran jejak karbon yang diperoleh dari kuliah tatap muka, kemudian diturunkan melalui belajar di rumah sebesar 749.868 Kg untuk simulasi 100 kelas/tahun. Diharapkan pengurangan Emisi GRK melalui pembelajaran di rumah ini dapat menjadi satu habituasi baru pasca wabah Covid 19. Kata kunci: Belajar di rumah, jejak karbon, gas rumah kaca. ABSTRACT  Greenhouse Gas (GHG) carbon emissions generated in the implementation of education in Higher Education can be said to be quite high. The accumulation of carbon causes the greenhouse effect which has an impact on increasing the temperature of the earth or is called global warming and causing ecological disasters. The Covid 19 pandemic has forced the learning process at home, automatically this has led to a pause in the use of energy from electronic devices and motorized vehicles which also means a reduction in GHG emissions from this energy. The purpose of this study was to determine the amount of carbon footprint generated during the learning process on campus, as well as the potential for reducing carbon emissions by learning from home. The research method is quantitative through an approach based on carbon footprint analysis as an instrument to calculate the amount of carbon dioxide (CO2) from human activities. Furthermore, the value of electrical energy (KWh) and fuel oil (Liters / hour) is converted into the amount of carbon GHG produced (CO2 α) from face-to-face learning activities in class. The results showed that the amount of carbon footprint obtained from face-to-face lectures, then reduced through home study, was 749,868 kg for a simulation of 100 classes / year. It is hoped that reducing GHG emissions through learning at home can become a new habituation after the Covid 19 outbreak. Keywords: Carbon footprint, greenhouse gases, home study.


2021 ◽  
Vol 10 (1) ◽  
Author(s):  
David Western ◽  
Victor N. Mose ◽  
David Maitumo ◽  
Caroline Mburu

Abstract Background Studies of the African savannas have used national parks to test ecological theories of natural ecosystems, including equilibrium, non-equilibrium, complex adaptive systems, and the role of top-down and bottom-up physical and biotic forces. Most such studies have excluded the impact of pastoralists in shaping grassland ecosystems and, over the last half century, the growing human impact on the world’s rangelands. The mounting human impact calls for selecting indicators and integrated monitoring methods able to track ecosystem changes and the role of natural and human agencies. Our study draws on five decades of monitoring the Amboseli landscape in southern Kenya to document the declining role of natural agencies in shaping plant ecology with rising human impact. Results We show that plant diversity and productivity have declined, biomass turnover has increased in response to a downsizing of mean plant size, and that ecological resilience has declined with the rising probability of extreme shortfalls in pasture production. The signature of rainfall and physical agencies in driving ecosystem properties has decreased sharply with growing human impact. We compare the Amboseli findings to the long-term studies of Kruger and Serengeti national parks to show that the human influence, whether by design or default, is increasingly shaping the ecology of savanna ecosystems. We look at the findings in the larger perspective of human impact on African grasslands and the world rangelands, in general, and discuss the implications for ecosystem theory and conservation policy and management. Conclusions The Amboseli study shows the value of using long-term integrated ecological monitoring to track the spatial and temporal changes in the species composition, structure, and function of rangeland ecosystems and the role of natural and human agencies in the process of change. The study echoes the widespread changes underway across African savannas and world’s rangelands, concluding that some level of ecosystem management is needed to prevent land degradation and the erosion of ecological function, services, and resilience. Despite the weak application of ecological theory to conservation management, a plant trait-based approach is shown to be useful in explaining the macroecological changes underway.


Agronomy ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 351
Author(s):  
Bernardo Martin-Gorriz ◽  
Victoriano Martínez-Alvarez ◽  
José Francisco Maestre-Valero ◽  
Belén Gallego-Elvira

Curbing greenhouse gas (GHG) emissions to combat climate change is a major global challenge. Although irrigated agriculture consumes considerable energy that generates GHG emissions, the biomass produced also represents an important CO2 sink, which can counterbalance the emissions. The source of the water supply considerably influences the irrigation energy consumption and, consequently, the resulting carbon footprint. This study evaluates the potential impact on the carbon footprint of partially and fully replacing the conventional supply from Tagus–Segura water transfer (TSWT) with desalinated seawater (DSW) in the irrigation districts of the Segura River basin (south-eastern Spain). The results provide evidence that the crop GHG emissions depend largely on the water source and, consequently, its carbon footprint. In this sense, in the hypothetical scenario of the TSWT being completely replaced with DSW, GHG emissions may increase by up to 50% and the carbon balance could be reduced by 41%. However, even in this unfavourable situation, irrigated agriculture in the study area could still act as a CO2 sink with a negative total and specific carbon balance of −707,276 t CO2/year and −8.10 t CO2/ha-year, respectively. This study provides significant policy implications for understanding the water–energy–food nexus in water-scarce regions.


2021 ◽  
Vol 28 (Supplement_1) ◽  
Author(s):  
T Batool ◽  
A Neven ◽  
Y Vanrompay ◽  
M Adnan ◽  
P Dendale

Abstract Funding Acknowledgements Type of funding sources: Other. Main funding source(s): Special Research Fund (BOF), Hasselt University Introduction The transportation sector is one of the major sectors influencing climate change, contributing around 16% of total Greenhouse gases (GHG) emissions. Aviation contributes to 12% of the transport related emissions. Among other climate change impacts, elevated heat exposure is associated with increased cardiac events and exposure to air pollution caused by GHG emissions has also well-known association with increased cardiovascular related morbidity and mortality. The global temperature rise should be restricted to less than 2 °C which requires keeping carbon emission (CO2) less than 2900 billion tonnes by the end of the 21st century. Assuming air travel a major contributing source to GHG, this study aims to raise the awareness about potential carbon emissions reduction due to air travel of international events like a scientific conference. Purpose Due to the global pandemic of COVID-19, the Preventive cardiology conference 2020 which was planned to be held at Malaga Spain, instead was held in virtual online way. This study aims to calculate the contribution of reduced CO2  emissions in tons due to ESC preventive cardiology conference 2020, which was then held online and air travel of the registered participants was avoided. Methods Anonymized participant registration information was used to determine the country and city of the 949 registered participants of the Preventive Cardiology conference 2020. It is assumed that participants would have travelled from the closest airports from their reported city locations to Malaga airport, Spain. At first, the closest city airports were determined using Google maps and flights information, then the flight emissions (direct and indirect CO2-equivalent emissions) per passenger for the given flight distances were calculated. The CO2 emissions (tons) were calculated for round trips in economy class from the participants of 68 nationalities (excluding 60 participants from Spain as they are assumed to take other modes of transport than airplane). Results In total, 1156.51 tons of CO2  emissions were saved by turning the physical conference into a virtual event. This emission amount is equivalent to the annual CO2 production of 108 people living in high-income countries. Conclusion The pandemic situation has forced us to rethink the necessity of trips by air and has shown us the feasibility of digitally organized events. The information from this study can add to the awareness about reduced amount of carbon emission due to air travel by organizing events in a virtual way when possible. Apart from only digitally organized events there are others options to reduce the carbon footprint of conferences such as limiting the number of physical attendees, encouraging the use of relatively sustainable transport modes for participants from nearby countries (e.g. international trains and use of active transport modes at conference venue etc.) and including CO2 emission offsetting costs.


2021 ◽  
Vol 13 (4) ◽  
pp. 1795
Author(s):  
Pedro Dorta Antequera ◽  
Jaime Díaz Pacheco ◽  
Abel López Díez ◽  
Celia Bethencourt Herrera

Many small islands base their economy on tourism. This activity, based to a large extent on the movement of millions of people by air transport, depends on the use of fossil fuels and, therefore, generates a large amount of greenhouse gas (GHG) emissions. In this work, these emissions are evaluated by means of various carbon calculators, taking the Canary Islands as an example, which is one of the most highly developed tourist archipelagos in the world. The result is that more than 6.4 million tonnes (Mt) of CO2 are produced per year exclusively due to the massive transport of tourists over an average distance of more than 3000 km. The relative weight of these emissions is of such magnitude that they are equivalent to more than 50% of the total amount produced by the socioeconomic activity of the archipelago. Although, individually, it is travelers from Russia and Nordic countries who generate the highest carbon footprint due to their greater traveling distance, the British and German tourists account for the greatest weight in the total, with two-thirds of emissions.


2021 ◽  
Vol 13 (15) ◽  
pp. 8532
Author(s):  
Michael M. Blanke ◽  
Sabine D. Golombek

(1) Background: Black plastics pose a general problem in sustainability issues, as the recycling is hampered by the black colour disguising the type of plastics in the NIR scanner on the garbage sorting belt, as the black colour absorbs NIR radiation. Sorting flower/plant pots suffer from their additional soil contamination in the strive for sustainable flower production in horticulture. As these black plastic flowerpots are currently rarely recycled, a study was instigated of reusing them based on Heino Schwarz’s innovative idea. (2) Methods: In the first step, the carbon footprint was calculated for the flowerpots of two sizes employed in the nursery, their customised production from virgin polypropylene and the delivery from the Netherlands to the nursery in Bavaria. In step 2, the carbon footprint was calculated based on PAS 2050-1 for the number of flowerpots in circulation and return rates in 2019 and in 2020 to assess the GHG saved by the innovation. (3) Results: The innovative concept of Heino Schwarz is a discount on returning the customised used flowerpots, with a 40% increase from 24,533 returned flowerpots in 2019 to 39,797 in 2020. This shows the increasing acceptance and environmental awareness of the consumer and the great success. (4) Conclusions and outlook: The present case study has shown that innovative approaches such as discounts for reused/returned flowerpots of the Schwarz nursery can save 3.85–4.56 t CO2eq, a valuable contribution to reducing GHG emissions, creating environmental awareness among the consumers and building a close B2C relationship. The amount of CO2eq saved is equivalent to ca. 40% of the annual carbon burden of a European/German citizen or ca. 23,000 km driven in a private vehicle, the average mileage driven privately in two years.


Author(s):  
Ketil Søyland ◽  
Christer Wolden ◽  
Christopher Garmann ◽  
Debbie Harrison

<p>How can large-scale infrastructure projects be sustainable? The purpose of this paper is to discuss how engineering practices were changed in order to reduce the carbon footprint of the E39 Rogfast project, the world’s longest roadway sub-sea tunnel. The project will generate greenhouse gas (GHG)-emissions exceeding 1% of Norway’s total annual GHG-emissions. The paper covers the project process, including some of the challenges to be overcome.</p>


Sign in / Sign up

Export Citation Format

Share Document