scholarly journals Territorial-Based vs. Consumption-Based Carbon Footprint of an Urban District—A Case Study of Berlin-Wedding

2021 ◽  
Vol 13 (13) ◽  
pp. 7262
Author(s):  
Clara Lenk ◽  
Rosalie Arendt ◽  
Vanessa Bach ◽  
Matthias Finkbeiner

Cities account for 70% of carbon emissions and are therefore a vital driver for climate change. Thus, a city’s main contributing sectors need to be identified. Territorial-based footprints focus on the final energy consumption, which is derived from the stationary and transport sectors. The consumption-based approach is based on consumption data, which are converted into carbon emissions using an input–output model. If the consumption-based approach is applied to an urban district not only emissions in the investigated area are considered, but also those that occur along the supply chain of consumed products in the urban district. The goal of this study was to apply and evaluate two different approaches to calculate an urban district’s carbon footprint to support climate protection management at the local government level. To achieve this goal, these two different approaches were applied to calculate the carbon emissions of the urban district Wedding in Berlin and were compared regarding criteria such as data availability and relevance. The footprints resulted in 400,947 t CO2–eq. for the territorial approach and in 401,371 t CO2–eq. per year for the consumption-based approach, which resulted in 4.61 t CO2–eq and 4.62 t CO2–eq per capita and year, respectively. Methodologically, the two approaches differ significantly, but the total results showed a difference of only 0.1%. Thus, this study cannot verify that the consumption-based approach mostly leads to higher emissions per capita in the Global North. This could be due to lower purchasing power and a higher share of multiple-person households in the relatively poor urban district of Wedding, Berlin. The territorial approach is more suitable to derive measures for local climate action, whereas the consumption-based approach highlights the responsibility of consumers for GHG emissions along the supply chain and the importance of the food sector.

2021 ◽  
Vol 13 (24) ◽  
pp. 13969
Author(s):  
Paulina A. Phophe ◽  
Mmoto L. Masubelele

Nature-based conservation management (NBCMs) estates are seen as natural solutions to climate change and hence immune to harmful greenhouse gas (GHG) emissions. However, NBCMs, in their daily operations to protect and conserve biodiversity, may result in GHG emissions. These may come as a significant carbon burden. This is the first study based on a literature review to look at the carbon footprint of an entire conservation estate operation and management. South African National Parks (SANParks) aimed to contribute to national targets by reducing their fossil-fuel-generated energy consumption by 2% per year until achieving carbon neutrality. The objectives of this paper were (1) to quantify the SANParks C emissions profile at the organization and individual park level and develop recommendations to sustainably reduce carbon emissions and (2) to suggest alternative scenarios that SANParks could follow to achieve zero energy emissions. The study presented an audit analysis of the emission sources linked to SANParks’ daily activities over a five-year period (2015–2019) using the GHGs protocol corporate accounting and reporting standard methodology. Over the reference period, SANParks emitted an average of 73,732 t of carbon dioxide equivalent (tCO2e) per year. Most emissions came from electricity usage, 40,681 tCO2e (55%), followed by fuel usage for stationary combustion at 26,088 tCO2e (35%), and both account for 90% of SANParks’ total emissions. Results have shown the variation amongst individual parks in GHG emission and intensity ratio among the different parks. Total SANParks emission showed a significant relationship with Scope 2, followed by number of employees, building size, Scope 3, and Scope 1, in order. This work recommends how SANParks estate may reduce their carbon emissions at a national and individual level. SANParks achieved 1% year-on-year energy emissions reduction through its renewable base; however, an ambitious target of 8% would be appropriate for a 1.5 °C future based on the energy scenario planning.


2013 ◽  
Vol 807-809 ◽  
pp. 1988-1991 ◽  
Author(s):  
Chang Chun Xu ◽  
Jing Huang ◽  
Fu Chen

In the process of supply chain management, the environmental impact is one important concern. Carbon footprint is a popular metric to quantify a products greenhouse gas (GHG) emissions, and assist supply chain management. In this paper, carbon footprints were calculated for three common milk products, 180 g Yogurt, 250 mL Fluid milk and 400g Skim milk powder (SMP) at the product brand level (YiYi®). The results demonstrated the well comprehensiveness and practicality of carbon footprint as streamlined indicator in supply chain management for agri-food products. The carbon footprints were compared among different life cycle stages as well as different products, and possible mitigation strategies were put forward for GHGs reductions. The relative contributions that different phases over the supply chain make were highlighted. On-farm emissions from cropping and livestock subsystems made up the majority of the carbon footprint, which deserved special attention in agri-food sector.


2021 ◽  
Author(s):  
Roz Price

Climate change and urbanisation are inextricably linked. With the acceleration of urbanisation in many developing countries, urban areas play a major role in energy consumption and carbon dioxide emissions. This is true of Nepal, which has experienced rapid urbanisation in recent decades. However, no studies were identified that evaluate the efforts of reducing greenhouse gas (GHG) emissions from low carbon cities in rapidly urbanising developing countries. Although, there is literature out there on this that focuses on developed countries and the Global North, this is outside the scope of this report. Given the rapid nature of this review and its limitations it was not possible to fully answer the question of whether investments in low-carbon cities reduce carbon emissions in rapidly urbanising contexts. The first section of this report looks at the theory of low carbon cities and touches on some of the methodologies for measuring carbon emissions from cities (and the complexities and difficulties with these). The second section looks at Nepal in more detail, highlighting previous literature which has attempted to quantify emissions from cities in Nepal (namely Kathmandu Valley) and the co-benefits of low carbon investment in Nepal. However, overall, literature was largely limited on these topics, and was often older being from 5 years or more ago. Of note is an emissions inventory for Nepal for 2016 by Sadavarte et al. (2019) – although other literature notes that data on emission characteristics are still limited (IMC Worldwide, 2020). ICLEI (2009) also produced city emissions profiles for 3 Nepalese cities, but these are quite outdated. There are several studies related to low carbon development pathways for major cities in developed countries or China, however such studies from the perspective of emerging cities from the developing world are limited. Research into other developing countries with similar characteristics to Nepal was briefly explored in this rapid review but there was not time to fully explore this literature base. Most of the literature explored is from academia, although some is from non-governmental organisations particularly those looking at engaging cities in climate action (such as C40). The literature explored does not look at gender issues or issues of people with disabilities.


2018 ◽  
Vol 107 ◽  
pp. 747-754 ◽  
Author(s):  
L. Roibás ◽  
S. Rodríguez-García ◽  
V.P. Valdramidis ◽  
A. Hospido

2017 ◽  
pp. 919-935
Author(s):  
Soobia Saeed

Electricity consumption will encompass a large converse about connected with international electricity demand while in the next 2 decades. Newly, this improving rate connected with fossil fuels and also issues about the environmentally friendly consequences connected with gas emissions get renewed the attention in the progress connected with alternative electricity resources. Renewable Energy Sources and Climate Change Modify Minimization offers a good estimation on the chapter for the technological, scientific, environmentally friendly, financial and also societal aspects of this factor connected with six renewable energy (RE) options for the minimization connected with weather adjust. This functioning chapter on environmentally friendly Energy Solutions and Local climate Change Minimization presents an assessment on the literature for the scientific chemical, technological, environment, economic in addition to social areas of the contribution connected with six environmentally friendly energy (RE) sources on the mitigation connected with climate alter. This chapter is definitely an overview of presentation of the Local climate Change Minimization expansion on the essential results. Considering this significant component of Renewable Energy Sources can be reduce carbon dioxide, there is an international relating to reducing carbon emissions. Due to the fact most of the United Nations wanted to greenhouse gas (GHG) emissions is carbon dioxide, there is a can be a global concern on minimizing carbon emissions. Emissions of greenhouse gases (GHGs) resulting from the provision of the services of one have contributed significantly to improve the historical concentrations of greenhouse gases to the atmosphere of MIT. The IPCC (AR4) concluded that “most of the observed global climate improving as it is very likely that as a result of the improvement observed in the concentrations of anthropogenic gases mit techniques this mid of 20th century confirms Recent Files the use of fossil power accounts for most of the international anthropogenic GHG emissions”. Emissions always grow, in addition to CO2 concentrations of it had increased to more than 390 ppm, or perhaps 39% above pre-industrial levels, by holding from 2014-5. There are many options for reducing GHG emissions from energy system while satisfying the desire for global energy services. Some of these possible alternatives, such as energy conservation and competition, switching fossil fuel, RE, nuclear, plus carbon capture and hard drive (CCS) was evaluated from the AR4. A full assessment related to any profile minimization options will likely involve an evaluation of respective potential alongside minimization with his bargain with sustainable development as well as all associated risks, and costs. This phase will focus on the role that this display technology related to RE can participate in within the portfolio related to mitigation alternatives. In this sense, the only policies can be given to reduce emissions of carbon dioxide, to improve the implementation of green energy, and such encouraging technological innovation. At inclusion, supporting components, such as feed-in tariffs, rules Renewable side view in addition to tax insurance policies are used by governments to help develop green energy generation in addition to the implementation of the efficiency of energy use save energy. In this chapter, the various insurance policies could possibly be placed on reducing carbon emissions, for instance improving green energy deployment and also significant technologies. A pair of main clarifications may be realizing to scale back carbon emissions and also overcome the issue connected with weather adjust: exchange fossil fuel having green electricity options wherever possible and also enhancing energy proficiency. In this chapter, many of us discuss most up-to-date performance connected with technology intended for improving green electricity deployment and also electricity work with proficiency.


2018 ◽  
Vol 10 (12) ◽  
pp. 4626 ◽  
Author(s):  
Min Huang ◽  
Yimin Chen ◽  
Yuanying Zhang

China has been the largest carbon emitter in the world since 2007 and is thus confronted with huge emission reduction pressures. The regional differences in socio-economic development lead to complex inter-provincial carbon transfer in China, which hinders the determination of the emission reduction responsibilities for the various provinces. Based on the latest multi-regional input-output data, this study analyzes the carbon footprint, inter-provincial carbon transfer, and the corresponding variations of 30 provinces in China from 2007 to 2010. The results show that the domestic carbon footprint increased from 4578 Mt in 2007 to 6252 Mt in 2010. Provinces with high carbon footprints were mainly found in central China, such as Shandong, Jiangsu, and Henan. Carbon footprints of the developed coastal provinces were greater than those of less developed provinces in Northwestern China. Per capita GDP (Gross Domestic Product) was positively correlated to the per capita carbon footprint, indicating a positive relationship between the economic development level and corresponding carbon emissions. Provincial carbon inflows were found to have increased steadily (ranging between 32% and 41%) from 2007 to 2010. The increases in direct carbon emissions varied largely among different provinces, ranging from below 30% in the developed provinces to more than 60% in the moderately developed provinces (e.g., Sichuan and Chongqing). The embodied carbon transferred from moderately developed or remote provinces to those developed ones. In other words, the carbon emission pressures of the developed provinces were shifted to the less developed provinces. The major paths of carbon flow include the transfers from Hebei to Jiangsu (32.07 Mt), Hebei to Beijing (26.78 Mt), Hebei to Zhejiang (25.60 Mt), and Liaoning to Jilin (27.60 Mt).


2019 ◽  
Vol 11 (23) ◽  
pp. 6875 ◽  
Author(s):  
Ichisugi ◽  
Masui ◽  
Karkour ◽  
Itsubo

In order to achieve target greenhouse gas (GHG) emissions, such as those proposed by each country by nationally determined contributions (NDCs), GHG emission projections are receiving attention around the world. Generally, integrated assessment models (IAMs) are used to estimate future GHG emissions considering both economic structure and final energy consumption. However, these models usually do not consider the entire supply chain, because of differences in the aims of application. In contrast, life cycle assessment (LCA) considers the entire supply chain but does not cover future environmental impacts. Therefore, this study aims to evaluate the national carbon footprint projection in Japan based on life cycle thinking and IAMs, using the advantages of each. A future input–output table was developed using the Asia-Pacific integrated model (AIM)/computable general equilibrium (CGE) model (Japan) developed by the National Institute for Environmental Studies (NIES). In this study, we collected the fundamental data using LCA databases and estimated future GHG emissions based on production-based and consumption-based approaches considering supply chains among industrial sectors. We targeted fiscal year (FY) 2030 because the Japanese government set a goal for GHG emissions in 2030 in its NDC report. Accordingly, we set three scenarios: FY2005 (business as usual (BAU)), FY2030 (BAU), and FY2030 (NDC). As a result, the carbon footprint (CFP) in FY2030 will be approximately 1097 megatons of carbon dioxide equivalent (MtCO₂eq), which is 28.5% lower than in FY2005. The main driver of this reduction is a shift in energy use, such as the introduction of renewable energy. According to the results, the CFP from the consumption side, fuel combustion in the use stage, transport and postal services, and electricity influence the total CFP, while results of the production side showed the CFP of the energy and material sectors, such as iron and steel and transport, will have an impact on the total CFP. Moreover, carbon productivity will gradually increase and FY2030 (NDC) carbon productivity will be higher than the other two cases.


Biomedicine ◽  
2021 ◽  
Vol 41 (4) ◽  
pp. 692-693
Author(s):  
Manjula Shantaram

If one has a passion for the planet, then this is the right time to drastically lower the carbon emissions. A carbon footprint is the total amount of greenhouse gases (including carbon dioxide and methane) that are generated by our actions. The average carbon footprint for a person in the United States is 16 tons, one of the highest rates in the world. Some carbon emissions will probably never be eradicated entirely from certain industries, such as air travel or construction. When emissions cannot be further reduced, carbon offsetting is the next best thing, says Winters (1). Offsetting emissions is paying for or investing in organisations that can extract carbon from the atmosphere to help others reduce their footprint. It could include investing in reforestation projects or new technologies that suck carbon out of the atmosphere and sequester it underground permanently, technologies to replace jet fuel with alternative green fuels, or switching fossil-fuel-powered facilities with hydrogen-powered facilities.    Unless the global economy meets the aims of the Paris Agreement, keeping climate change well below 2°C, the world is expected to suffer extreme weather conditions leading to mass migration and global catastrophe. The argument for global companies to reduce their greenhouse gas (GHG) emissions is clearer than it has ever been. Business operations around the world are now subject to greater climate and transition risks. Consumers are insisting for eco-friendly products and responsible corporate behaviours. Investors are increasingly embracing capital-allocation strategies that take environmental, social, and governance (ESG) issues into account. Policy makers and government organizations are exploring the potential regulation of carbon emissions. The more aggressive the targets, the better the results.   In COP26 climate summit in Glasgow held in November 2021, it was made clear that the current climate crisis has been precipitated by unsustainable lifestyles and wasteful consumption patterns mainly in the developed countries. The world needs to awaken to this reality. Globally, the building and construction sectors account for nearly 40% of global energy-related carbon dioxide emissions in constructing and operating buildings (2). Current building codes address operating energy but do not typically address the impacts of embodied carbon in building materials and products. However, more than half of all GHG emissions is related to materials management (including material extraction and manufacturing) when aggregated across industrial sectors (3).   In order to reduce our carbon footprint, we can start an eco-friendlier life. In winter, instead of heating, insulate the loft and walls which will make sure our home retains heat during the winter and stays cool in summer. By switching to a company that provides electricity from solar, wind, or hydroelectric energy, we can reduce our household emissions. Buy energy efficient electrical appliances. Additionally, make sure to turn off and unplug anything we are not using. It takes energy and resources to process and deliver water to our homes. So, by using less water, we can help the environment and lower our carbon footprint. The food we eat can have a significant impact on the environment. For example, meat and dairy products require a lot of land, water and energy to produce. They also create a lot of methane, a greenhouse gas. Moreover, food shipped from overseas uses a lot more resources than local produce. By eating fewer animal products, especially red meat, (or choosing a plant-based diet) and shopping for locally sourced food, we can make a big difference.  Why not support our local farmers’ market?   Powering empty rooms and office space is a huge energy drain. By making sure we turn off lights and appliances when they are not in use, we can make sure we are not wasting power. we can also request to install automatic, movement-sensing lights and energy-saving LED bulbs to address the issue. It has never been easier to collaborate with others online. Whether through sharing documents using cloud storage or video conferencing instead of travelling, we can reduce our waste and emissions. Try moving away from printed documents where possible, and encourage others to work on their digital skills for the workplace. Cycling and walking are two of the most environmentally friendly ways to travel. And, not only are they good for the planet, but they are also good for our health. If we can, choose to cycle or walk to work where possible. ‘Reduce, reuse, recycle’ is a popular slogan. Companies of all sizes use a host of different products in their day-to-day running. Whether it has things like paper, electronic devices, packaging, or water, it all has a carbon footprint. By reducing the amount of waste, we generate, reusing IT equipment, and recycling waste, we can make a real difference. Single use plastics may be convenient, yet they are fairly dreadful for the environment. Not only do they pollute our waterways and oceans, but they also require energy to produce and recycle. We can stop using things like disposable coffee cups and cutlery to reduce our company’s carbon footprint. Instead of preaching, let us practise and bring a change.


Author(s):  
Soobia Saeed

Electricity consumption will encompass a large converse about connected with international electricity demand while in the next 2 decades. Newly, this improving rate connected with fossil fuels and also issues about the environmentally friendly consequences connected with gas emissions get renewed the attention in the progress connected with alternative electricity resources. Renewable Energy Sources and Climate Change Modify Minimization offers a good estimation on the chapter for the technological, scientific, environmentally friendly, financial and also societal aspects of this factor connected with six renewable energy (RE) options for the minimization connected with weather adjust. This functioning chapter on environmentally friendly Energy Solutions and Local climate Change Minimization presents an assessment on the literature for the scientific chemical, technological, environment, economic in addition to social areas of the contribution connected with six environmentally friendly energy (RE) sources on the mitigation connected with climate alter. This chapter is definitely an overview of presentation of the Local climate Change Minimization expansion on the essential results. Considering this significant component of Renewable Energy Sources can be reduce carbon dioxide, there is an international relating to reducing carbon emissions. Due to the fact most of the United Nations wanted to greenhouse gas (GHG) emissions is carbon dioxide, there is a can be a global concern on minimizing carbon emissions. Emissions of greenhouse gases (GHGs) resulting from the provision of the services of one have contributed significantly to improve the historical concentrations of greenhouse gases to the atmosphere of MIT. The IPCC (AR4) concluded that “most of the observed global climate improving as it is very likely that as a result of the improvement observed in the concentrations of anthropogenic gases mit techniques this mid of 20th century confirms Recent Files the use of fossil power accounts for most of the international anthropogenic GHG emissions”. Emissions always grow, in addition to CO2 concentrations of it had increased to more than 390 ppm, or perhaps 39% above pre-industrial levels, by holding from 2014-5. There are many options for reducing GHG emissions from energy system while satisfying the desire for global energy services. Some of these possible alternatives, such as energy conservation and competition, switching fossil fuel, RE, nuclear, plus carbon capture and hard drive (CCS) was evaluated from the AR4. A full assessment related to any profile minimization options will likely involve an evaluation of respective potential alongside minimization with his bargain with sustainable development as well as all associated risks, and costs. This phase will focus on the role that this display technology related to RE can participate in within the portfolio related to mitigation alternatives. In this sense, the only policies can be given to reduce emissions of carbon dioxide, to improve the implementation of green energy, and such encouraging technological innovation. At inclusion, supporting components, such as feed-in tariffs, rules Renewable side view in addition to tax insurance policies are used by governments to help develop green energy generation in addition to the implementation of the efficiency of energy use save energy. In this chapter, the various insurance policies could possibly be placed on reducing carbon emissions, for instance improving green energy deployment and also significant technologies. A pair of main clarifications may be realizing to scale back carbon emissions and also overcome the issue connected with weather adjust: exchange fossil fuel having green electricity options wherever possible and also enhancing energy proficiency. In this chapter, many of us discuss most up-to-date performance connected with technology intended for improving green electricity deployment and also electricity work with proficiency.


2020 ◽  
Vol 6 (2) ◽  
Author(s):  
Amrizarois Ismail

Emisi karbon Gas Rumah Kaca (GRK) yang dihasilkan dalam penyelenggaraan pendidikan di Perguruan Tinggi dapat dikatakan cukup tinggi. Akumulasi karbon menjadi penyebab efek rumah kaca yang berdampak pada peningkatan suhu bumi atau disebut pemanasan global dan menimbulkan bencana ekologis. Pandemi Covid 19 telah memaksa proses belajar di rumah, secara otomatis hal tersebut mendorong adanya jeda dalam penggunaan energi dari alat elektronik dan kendaraan bermotor yang juga berarti terjadi penurunan Emisi GRK dari energi tersebut. Tujuan penelitian ini adalah untuk mengetahui besaran jejak karbon yang dihasilkan selama proses pembelajaran di kampus, sekaligus potensi penurunan Emisi karbon oleh belajar dari rumah. Metode penelitian adalah kuantitatif melalui pendekatan berbasis analisis jejak karbon sebagai instrumen untuk menghitung jumlah karbondioksida (CO2) dari kegiatan manusia. Selanjutnya dilakukan konversi nilai energi listrik (KWh) dan bahan bakar minyak (Liter/jam) menjadi besaran carbon GRK yang dihasilkan (CO2 α) dari kegiatan belajar/perkuliahan secara tatap muka dalam kelas. Hasil penelitian menunjukkan besaran jejak karbon yang diperoleh dari kuliah tatap muka, kemudian diturunkan melalui belajar di rumah sebesar 749.868 Kg untuk simulasi 100 kelas/tahun. Diharapkan pengurangan Emisi GRK melalui pembelajaran di rumah ini dapat menjadi satu habituasi baru pasca wabah Covid 19. Kata kunci: Belajar di rumah, jejak karbon, gas rumah kaca. ABSTRACT  Greenhouse Gas (GHG) carbon emissions generated in the implementation of education in Higher Education can be said to be quite high. The accumulation of carbon causes the greenhouse effect which has an impact on increasing the temperature of the earth or is called global warming and causing ecological disasters. The Covid 19 pandemic has forced the learning process at home, automatically this has led to a pause in the use of energy from electronic devices and motorized vehicles which also means a reduction in GHG emissions from this energy. The purpose of this study was to determine the amount of carbon footprint generated during the learning process on campus, as well as the potential for reducing carbon emissions by learning from home. The research method is quantitative through an approach based on carbon footprint analysis as an instrument to calculate the amount of carbon dioxide (CO2) from human activities. Furthermore, the value of electrical energy (KWh) and fuel oil (Liters / hour) is converted into the amount of carbon GHG produced (CO2 α) from face-to-face learning activities in class. The results showed that the amount of carbon footprint obtained from face-to-face lectures, then reduced through home study, was 749,868 kg for a simulation of 100 classes / year. It is hoped that reducing GHG emissions through learning at home can become a new habituation after the Covid 19 outbreak. Keywords: Carbon footprint, greenhouse gases, home study.


Sign in / Sign up

Export Citation Format

Share Document