scholarly journals Estimation of the Setting and Infrastructure Criterion of the UI GreenMetric Ranking Using Unmanned Aerial Vehicles

2021 ◽  
Vol 14 (1) ◽  
pp. 46
Author(s):  
Jose Eduardo Fuentes ◽  
Cesar Edwin Garcia ◽  
Robin Alexis Olaya

This study presents a methodology to estimate the seven indicators of the Setting and Infrastructure criterion of the UI GreenMetric World University Ranking based on three-dimensional data from a point cloud taken from an unmanned aerial vehicle (UAV). This study also estimated the potential aerial biomass, C and CO2, stored in the green spaces of a university campus using photogrammetric data analyzed in a Geographic Information System (GIS). The method was based on isolating classified point clouds using digital surface models (DSMs) and ground control points (GCPs) considering the canopy height model (CHM), the allometric equation (DBH, p, h), the biomass conversion factor, and carbon dioxide equivalents (CO2-e). The results confirmed that the national models for estimating the potential C reserves in natural forests are very close to reality and that the open space and green areas available to people on campus are adequate. The use of photogrammetric data facilitated the estimation of UI GreenMetric indicators from a highly detailed, low-cost three-dimensional model. The results of a case study revealed that the campus assimilates the CO2 emissions it produces and generates a surplus.

Author(s):  
L. Rossi ◽  
F. Ioli ◽  
E. Capizzi ◽  
L. Pinto ◽  
M. Reguzzoni

Abstract. A fundamental step of UAV photogrammetric processes is to collect Ground Control Points (GCPs) by means of geodetic-quality GNSS receivers or total stations, thus obtaining an absolutely oriented model with a centimetric accuracy. This procedure is usually time-consuming, expensive and potentially dangerous for operators who sometimes need to reach inaccessible areas. UAVs equipped with low-cost GNSS/IMU sensors can provide information about position and attitude of the images. This telemetry information is not enough for a photogrammetric restitution with a centimetric accuracy, but it can be usefully exploited when a lower accuracy is required. The algorithm proposed in this paper aims at improving the quality of this information, in order to introduce it into a direct-photogrammetric process, without collecting GCPs. In particular, the estimation of an optimal trajectory is obtained by combining the camera positions derived from UAV telemetry and from the relative orientation of the acquired images, by means of a least squares adjustment. Then, the resulting trajectory is used as a direct observation of the camera positions into a commercial software, thus replacing the information of GCPs. The algorithm has been tested on different datasets, comparing the classical photogrammetric solution (with GCPs) with the proposed one. These case-studies showed that using the improved trajectory as input to the commercial software (without GCPs) the reconstruction of the three-dimensional model can be improved with respect to the solution computed by using the UAV raw telemetry only.


Author(s):  
Y. Taddia ◽  
C. Corbau ◽  
E. Zambello ◽  
V. Russo ◽  
U. Simeoni ◽  
...  

The balance of a coastal environment is particularly complex: the continuous formation of dunes, their destruction as a result of violent storms, the growth of vegetation and the consequent growth of the dunes themselves are phenomena that significantly affect this balance. This work presents an approach to the long-term monitoring of a complex dune system by means of Unmanned Aerial Vehicles (UAVs). Four different surveys were carried out between November 2015 and November 2016. Aerial photogrammetric data were acquired during flights by a DJI Phantom 2 and a DJI Phantom 3 with cameras in a nadiral arrangement. GNSS receivers in Network Real Time Kinematic (NRTK) mode were used to frame models in the European Terrestrial Reference System. Processing of the captured images consisted in reconstruction of a three-dimensional model using the principles of Structure from Motion (SfM). Particular care was necessary due to the vegetation: filtering of the dense cloud, mainly based on slope detection, was performed to minimize this issue. Final products of the SfM approach were represented by Digital Elevation Models (DEMs) of the sandy coastal environment. Each model was validated by comparison through specially surveyed points. Other analyses were also performed, such as cross sections and computing elevation variations over time. The use of digital photogrammetry by UAVs is particularly reliable: fast acquisition of the images, reconstruction of high-density point clouds, high resolution of final elevation models, as well as flexibility, low cost and accuracy comparable with other available techniques.


Robotica ◽  
2010 ◽  
Vol 29 (5) ◽  
pp. 733-743 ◽  
Author(s):  
Conghui Liang ◽  
Hao Gu ◽  
Marco Ceccarelli ◽  
Giuseppe Carbone

SUMMARYA mechanical design and dynamics walking simulation of a novel tripod walking robot are presented in this paper. The tripod walking robot consists of three 1-degree-of-freedom (DOF) Chebyshev–Pantograph leg mechanisms with linkage architecture. A balancing mechanism is mounted on the body of the tripod walking robot to adjust its center of gravity (COG) during walking for balancing purpose. A statically stable tripod walking gait is performed by synchronizing the motions of the three leg mechanisms and the balancing mechanism. A three-dimensional model has been elaborated in SolidWorks® engineering software environment for a characterization of a feasible mechanical design. Dynamics simulation has been carried out in the MSC.ADAMS® environment with the aim to characterize and to evaluate the dynamic walking performances of the proposed design with low-cost easy-operation features. Simulation results show that the proposed tripod walking robot with proper input torques, gives limited reaction forces at the linkage joints, and a practical feasible walking ability on a flatten ground.


2019 ◽  
Vol 93 (3) ◽  
pp. 411-429 ◽  
Author(s):  
Maria Immacolata Marzulli ◽  
Pasi Raumonen ◽  
Roberto Greco ◽  
Manuela Persia ◽  
Patrizia Tartarino

Abstract Methods for the three-dimensional (3D) reconstruction of forest trees have been suggested for data from active and passive sensors. Laser scanner technologies have become popular in the last few years, despite their high costs. Since the improvements in photogrammetric algorithms (e.g. structure from motion—SfM), photographs have become a new low-cost source of 3D point clouds. In this study, we use images captured by a smartphone camera to calculate dense point clouds of a forest plot using SfM. Eighteen point clouds were produced by changing the densification parameters (Image scale, Point density, Minimum number of matches) in order to investigate their influence on the quality of the point clouds produced. In order to estimate diameter at breast height (d.b.h.) and stem volumes, we developed an automatic method that extracts the stems from the point cloud and then models them with cylinders. The results show that Image scale is the most influential parameter in terms of identifying and extracting trees from the point clouds. The best performance with cylinder modelling from point clouds compared to field data had an RMSE of 1.9 cm and 0.094 m3, for d.b.h. and volume, respectively. Thus, for forest management and planning purposes, it is possible to use our photogrammetric and modelling methods to measure d.b.h., stem volume and possibly other forest inventory metrics, rapidly and without felling trees. The proposed methodology significantly reduces working time in the field, using ‘non-professional’ instruments and automating estimates of dendrometric parameters.


Author(s):  
T. Guo ◽  
A. Capra ◽  
M. Troyer ◽  
A. Gruen ◽  
A. J. Brooks ◽  
...  

Recent advances in automation of photogrammetric 3D modelling software packages have stimulated interest in reconstructing highly accurate 3D object geometry in unconventional environments such as underwater utilizing simple and low-cost camera systems. The accuracy of underwater 3D modelling is affected by more parameters than in single media cases. This study is part of a larger project on 3D measurements of temporal change of coral cover in tropical waters. It compares the accuracies of 3D point clouds generated by using images acquired from a system camera mounted in an underwater housing and the popular GoPro cameras respectively. A precisely measured calibration frame was placed in the target scene in order to provide accurate control information and also quantify the errors of the modelling procedure. In addition, several objects (cinder blocks) with various shapes were arranged in the air and underwater and 3D point clouds were generated by automated image matching. These were further used to examine the relative accuracy of the point cloud generation by comparing the point clouds of the individual objects with the objects measured by the system camera in air (the best possible values). Given a working distance of about 1.5 m, the GoPro camera can achieve a relative accuracy of 1.3 mm in air and 2.0 mm in water. The system camera achieved an accuracy of 1.8 mm in water, which meets our requirements for coral measurement in this system.


2018 ◽  
Vol 10 (12) ◽  
pp. 1869 ◽  
Author(s):  
Nicolás Corti Meneses ◽  
Florian Brunner ◽  
Simon Baier ◽  
Juergen Geist ◽  
Thomas Schneider

Quantification of reed coverage and vegetation status is fundamental for monitoring and developing lake conservation strategies. The applicability of Unmanned Aerial Vehicles (UAV) three-dimensional data (point clouds) for status evaluation was investigated. This study focused on mapping extent, density, and vegetation status of aquatic reed beds. Point clouds were calculated with Structure from Motion (SfM) algorithms in aerial imagery recorded with Rotary Wing (RW) and Fixed Wing (FW) UAV. Extent was quantified by measuring the surface between frontline and shoreline. Density classification was based on point geometry (height and height variance) in point clouds. Spectral information per point was used for calculating a vegetation index and was used as indicator for vegetation vitality. Status was achieved by combining data on density, vitality, and frontline shape outputs. Field observations in areas of interest (AOI) and optical imagery were used for reference and validation purposes. A root mean square error (RMSE) of 1.58 m to 3.62 m for cross sections from field measurements and classification was achieved for extent map. The overall accuracy (OA) acquired for density classification was 88.6% (Kappa = 0.8). The OA for status classification of 83.3% (Kappa = 0.7) was reached by comparison with field measurements complemented by secondary Red, Green, Blue (RGB) data visual assessments. The research shows that complex transitional zones (water–vegetation–land) can be assessed and support the suitability of the applied method providing new strategies for monitoring aquatic reed bed using low-cost UAV imagery.


Drones ◽  
2019 ◽  
Vol 3 (1) ◽  
pp. 15 ◽  
Author(s):  
Salvatore Manfreda ◽  
Petr Dvorak ◽  
Jana Mullerova ◽  
Sorin Herban ◽  
Pietro Vuono ◽  
...  

Small unmanned aerial systems (UASs) equipped with an optical camera are a cost-effective strategy for topographic surveys. These low-cost UASs can provide useful information for three-dimensional (3D) reconstruction even if they are equipped with a low-quality navigation system. To ensure the production of high-quality topographic models, careful consideration of the flight mode and proper distribution of ground control points are required. To this end, a commercial UAS was adopted to monitor a small earthen dam using different combinations of flight configurations and by adopting a variable number of ground control points (GCPs). The results highlight that optimization of both the choice and combination of flight plans can reduce the relative error of the 3D model to within two meters without the need to include GCPs. However, the use of GCPs greatly improved the quality of the topographic survey, reducing error to the order of a few centimeters. The combined use of images extracted from two flights, one with a camera mounted at nadir and the second with a 20° angle, was found to be beneficial for increasing the overall accuracy of the 3D model and especially the vertical precision.


Geosphere ◽  
2019 ◽  
Vol 15 (4) ◽  
pp. 1393-1408 ◽  
Author(s):  
Reuben J. Hansman ◽  
Uwe Ring

AbstractGeological field mapping is a vital first step in understanding geological processes. During the 20th century, mapping was revolutionized through advances in remote sensing technology. With the recent availability of low-cost remotely piloted aircraft (RPA), field geologists now routinely carry out aerial imaging without the need to use satellite, helicopter, or airplane systems. RPA photographs are processed by photo-based three-dimensional (3-D) reconstruction software, which uses structure-from-motion and multi-view stereo algorithms to create an ultra-high-resolution, 3-D point cloud of a region or target outcrop. These point clouds are analyzed to extract the orientation of geological structures and strata, and are also used to create digital elevation models and photorealistic 3-D models. However, this technique has only recently been used for structural mapping. Here, we outline a workflow starting with RPA data acquisition, followed by photo-based 3-D reconstruction, and ending with a 3-D geological model. The Jabal Hafit anticline in the United Arab Emirates was selected to demonstrate this workflow. At this anticline, outcrop exposure is excellent and the terrain is challenging to navigate due to areas of high relief. This makes for an ideal RPA mapping site and provides a good indication of how practical this method may be for the field geologist. Results confirm that RPA photo-based 3-D reconstruction mapping is an accurate and cost-efficient remote sensing method for geological mapping.


2014 ◽  
Vol 662 ◽  
pp. 183-186
Author(s):  
Guo Lei Xu ◽  
Tao Wu

This paper introduces an easy-sided automatic window cleaning device, which uses Solid Edge software to design three-dimensional model and simulation analysis of the structure. Contrasted with the function of existing products, this design has such advantages as simple structure, low cost, high efficiency, good effects and so on.


Author(s):  
Andrea Luczfalvy Jancsó ◽  
Benoît Jonlet ◽  
Pierre Hallot ◽  
Florent Poux ◽  
Patrick Hoffsummer ◽  
...  

During the past decade, the implementation of 3D visualization and Geographic Information System (GIS) in archaeological research has increased and is now well established. However, the combination of these two factors remains rather complicated when faced with archaeological data. Some of the characteristics of this discipline impose the development of applications that will be able to cope with all of the specificities of archaeological data. Our research aims to create an Archaeological Information System (AIS) that will gather all of the characteristics of an archaeological work. In order to develop such an AIS, our first step was to identify its purposes and consequently, the features that should be available to the users. As it is destined to help with archaeological research, it is therefore of the outmost importance that the particularities of such a study are also taken into account. Moreover, the AIS is intended to incorporate point clouds that serve as a base for the three-dimensional model. These 3D point clouds result from the use of photogrammetry and/or lasergrammetry and, at a later stage, will be inserted into a GIS similar structure. The archaeological data will then be linked to the relevant section of the 3D model. However, these various stages and during the development of the AIS itself, we will encounter a series of issues that require to be addressed in order to produce a working system. This paper aims to identify and define the AIS characteristics as well as the issues and obstacles that we are going to face so that this system becomes a functional tool for archaeological research.


Sign in / Sign up

Export Citation Format

Share Document