scholarly journals Key Concerns and Drivers of Low-Cost Air Quality Sensor Use

2022 ◽  
Vol 14 (1) ◽  
pp. 584
Author(s):  
Priyanka Nadia deSouza

Low-cost sensors are revolutionizing air pollution monitoring by providing real-time, highly localized air quality information. The relatively low-cost nature of these devices has made them accessible to the broader public. Although there have been several fitness-of-purpose appraisals of the various sensors on the market, little is known about what drives sensor usage and how the public interpret the data from their sensors. This article attempts to answer these questions by analyzing the key themes discussed in the user reviews of low-cost sensors on Amazon. The themes and use cases identified have the potential to spur interventions to support communities of sensor users and inform the development of actionable data-visualization strategies with the measurements from such instruments, as well as drive appropriate ‘fitness-of-purpose’ appraisals of such devices.

2012 ◽  
Vol 2012 ◽  
pp. 1-5
Author(s):  
Joonhee Kang ◽  
Jin Young Kim

Monitoring air pollution including the contents of VOC, O3, NO2, and dusts has attracted a lot of interest in addition to the monitoring of water contamination because it affects directly to the quality of living conditions. Most of the current air pollution monitoring stations use the expensive and bulky instruments and are only installed in the very limited area. To bring the information of the air and water quality to the public in real time, it is important to construct portable monitoring systems and distribute them close to our everyday living places. In this work, we have constructed a low-cost portable RF sensor system by using 400 MHz transceiver to achieve this goal. Accuracy of the measurement was comparable to the ones used in the expensive and bulky commercial air pollution forecast systems.


2020 ◽  
Author(s):  
Farid RAHAL ◽  
Noureddine BENABADJI ◽  
Mohamed BENCHERIF ◽  
Mohamed Menaouer BENCHERIF

Abstract In Algeria, air pollution is classified as a major risk by the law. However, this risk is underestimated because there is no operational network for measuring air quality on a continuous basis.Despite the heavy investments made to equip several cities with these measurement systems, they are out of order due to a lack of continuous financial support.The alternative to the absence of these air pollution measurement networks can come from the recent development of electrochemical sensor technologies for air quality monitoring which arouses a certain interest because of their miniaturization, low energy consumption and low cost.We developed a low-cost outdoor carbon monoxide analyzer called APOMOS (Air pollution Monitoring System) based on electrochemical sensor managed by microcontroller. An application developed with the Python language makes it possible to manage process and analyze the collected data.In order to validate the APOMOS system, the recorded measurements are compared with measurements taken by a conventional analyzer.Comparison of the measurements resulting from conventional analyzer and those resulting from the APOMOS system gives a coefficient of determination of 98.39 %.Two versions of this system have been designed. A fixed version and another embedded, equipped with a GPS sensor. These 2 variants were used in the city of Oran in Algeria to measure the concentration of carbon monoxide continuously.The targeted pollutant is carbon monoxide. However, the design of the APOMOS system allows its evolution in an easy way in order to integrate other sensors concerning the various atmospheric pollutants.


Atmosphere ◽  
2020 ◽  
Vol 11 (11) ◽  
pp. 1215
Author(s):  
Grazia Fattoruso ◽  
Martina Nocerino ◽  
Domenico Toscano ◽  
Luigi Pariota ◽  
Giampiero Sorrentino ◽  
...  

Urban air pollution continues to represent a primary concern for human health, despite significant efforts by public authorities for mitigating its effects. Regulatory monitoring networks are essential tools for air pollution monitoring. However, they are sparse networks, unable to capture the spatial variability of the air pollutants. For addressing this issue, networks of low cost stations are deployed, supplementing the regulatory stations. Regarding this application, an important question is where these stations are installed The objective of this study was to generate a site suitability map for the development of a network of low cost multi-sensor stations across a city for a spatially dense urban air quality monitoring. To do that, a site suitability analysis was developed based on two geographical variables properly selected for representing the impact of urban pollutant sources and urban form on the pollutant concentrations. By processing information about emissions patterns and street canyon effects, we were able to identify air quality hotspot areas supposed to show high spatial variability. Low cost monitoring stations, there located, are able to provide that informative content, which is lacking for both regulatory monitoring networks and predictive modelling for high resolution air quality mapping.


2019 ◽  
Vol 29 ◽  
pp. 03007
Author(s):  
György KolumbÁn-Antal ◽  
Vladko Lasak ◽  
Razvan Bogdan ◽  
Bogdan Groza

Counteracting the effects of air quality degradation is one of the main challenges in large cities today. To achieve such a goal, the first step is to control the emissions of various pollutant gases which in turn requires their concentrations to be measured such that proper methods can be applied. In this work we present a low cost urban air pollution monitoring system which we developed as proof-of-concept in Timisoara, Romania. The proposed solution is a Vehicular Sensor Network (VSN), with affordable midclass sensor nodes being installed on moving vehicles, ideally on the public transportation busses. The system measures temperature, humidity, the concentration of CO2 and dust, along with Volatile Organic Compounds (VOC). The aim of collecting weather data is to build correlations between air pollution levels and different weather conditions. In addition to technical constraints for measuring air quality, one of the challenges that we address is to implement secure transmissions between the devices. This raises several difficulties on microcontrollers that we use due to their low memory and computational resources. To answer both privacy and security issues, the proposed data transmission protocol of the measuring system, builds upon a modified version of the Station to Station (STS) protocol which allows secure tunnelling in an anonymous manner.


PeerJ ◽  
2020 ◽  
Vol 8 ◽  
pp. e10041
Author(s):  
Zenon Nieckarz ◽  
Jerzy A. Zoladz

The issue of air pollution by particulate matter (PM) concerns many places in the world. At the same time, many residents undertake physical activity (recreation, rehabilitation, sport) in the open air. Generally, the amount of dust concentration depends on both the place (center or periphery of the city) and the time of day. In the present study we describe the outcome of monitoring of the state of air pollution by particle matter (PM10) in the Kraków agglomeration area in order to show that it can provide information concerning air quality in the area where people practice varied kinds of sports in the open air. The measurements of PM10 have been made by a few stations with identical construction working as one network. The details of the air pollution monitoring system and its data quality verification have been described. The network stations made multipoint observations across the Kraków Metropolitan Area during the year 2017 in eight locations. The locations selected represent a diverse spectrum of terrain conditions in which the Kraków agglomeration community undertakes physical activity. For most months of 2017, the minimum monthly average 4-hour PM10 concentrations were recorded between 10–14 h, regardless of location, whereas the maximum was between 18–22. We also noticed a huge differences in the average monthly value of PM10 in some locations within the Kraków agglomeration—ranging between 4.9–339.0 µg m−3. This indicates that some regions of the city are more suitable for performance of physical activity in the open air than others. In conclusion, we postulate that a low-cost air pollution monitoring system is capable of providing valuable information concerning air quality in a given region, which seems to be of importance also to people who practice varied sports activities in the open air.


2020 ◽  
Author(s):  
Rishabh Bajaj ◽  
Rishav Sen ◽  
Anik Sengupta ◽  
Aryama Sen ◽  
Sayan Karmakar ◽  
...  

In recent years, the problem of low air quality has been discussed in mass media over and over, with increasing urgency. Air pollutants are many and varied - caused by industrial and domestic activities, natural disasters and accidents, and more. Continuous daily breathing of polluted air has a bad effect on human health. The availability and easy access to up-to-date air quality information is useful for citizens when they plan outdoor activities and for their health prevention. There are numerous software applications on the web that track different characteristics of air quality in various cities. Some of them collect data using their own measuring stations, while others collect data from specialized sensors that citizens purchase and install at their preferred location. The task of aggregating data from multiple sources and providing it to users in an appropriate format is a topical task. The paper presents a web application that reports real-time air quality in a user-selected city. The application visualizes information on air temperature and humidity, particulate matter levels, ozone, nitrogen dioxide, ozone and sulfur dioxide. The data is collected using web services from various sources – informational websites and specialized sensors. Future work is directed toward the use of artificial neural networks to predict air pollution, and to determine real-time air quality at points where no measuring stations exist.


Sensors ◽  
2018 ◽  
Vol 18 (12) ◽  
pp. 4451 ◽  
Author(s):  
Lan Luo ◽  
Yue Zhang ◽  
Bryan Pearson ◽  
Zhen Ling ◽  
Haofei Yu ◽  
...  

The emerging connected, low-cost, and easy-to-use air quality monitoring systems have enabled a paradigm shift in the field of air pollution monitoring. These systems are increasingly being used by local government and non-profit organizations to inform the public, and to support decision making related to air quality. However, data integrity and system security are rarely considered during the design and deployment of such monitoring systems, and such ignorance leaves tremendous room for undesired and damaging cyber intrusions. The collected measurement data, if polluted, could misinform the public and mislead policy makers. In this paper, we demonstrate such issues by using a.com, a popular low-cost air quality monitoring system that provides an affordable and continuous air quality monitoring capability to broad communities. To protect the air quality monitoring network under this investigation, we denote the company of interest as a.com. Through a series of probing, we are able to identify multiple security vulnerabilities in the system, including unencrypted message communication, incompetent authentication mechanisms, and lack of data integrity verification. By exploiting these vulnerabilities, we have the ability of “impersonating” any victim sensor in the a.com system and polluting its data using fabricated data. To the best of our knowledge, this is the first security analysis of low-cost and connected air quality monitoring systems. Our results highlight the urgent need in improving the security and data integrity design in these systems.


Sign in / Sign up

Export Citation Format

Share Document