scholarly journals Energy Saving and Carbon Reduction in the Operation Stage of Cross Laminated Timber Residential Buildings in China

2017 ◽  
Vol 9 (2) ◽  
pp. 292 ◽  
Author(s):  
Haibo Guo ◽  
Ying Liu ◽  
Wen-Shao Chang ◽  
Yu Shao ◽  
Cheng Sun
Energies ◽  
2021 ◽  
Vol 14 (5) ◽  
pp. 1321
Author(s):  
Yu-Jin Hwang ◽  
Jae-Weon Jeong

The objective of this research is to establish an appropriate operating strategy for a radiant floor heating system that additionally has an air source heat pump for providing convective air heating separately, leading to heating energy saving and thermal comfort in residential buildings. To determine the appropriate optimal operating ratio of each system taking charge of combined heating systems, the energy consumption of the entire system was drawn, and the adaptive floor surface temperature was reviewed based on international standards and literature on thermal comfort. For processing heating loads with radiant floor heating and air source heating systems, the heating capacity of radiant floor heating by 1 °C variation in floor temperature was calculated, and the remaining heating load was handled by the heating capacity of the convective air heating heat pump. Consequently, when the floor temperature was 25 °C, all heating loads were removed by radiant floor heating only. When handling all heating loads with the heat pump, 59.2% less energy was used compared with radiant floor heating only. Considering the local discomfort of the soles of the feet, the floor temperature is expected to be suitable at 22–23 °C, and 31.5–37.6% energy saving compared with those of radiant floor heating alone were confirmed.


Energies ◽  
2021 ◽  
Vol 14 (2) ◽  
pp. 442
Author(s):  
Xiaoyue Zhu ◽  
Bo Gao ◽  
Xudong Yang ◽  
Zhong Yu ◽  
Ji Ni

In China, a surging urbanization highlights the significance of building energy conservation. However, most building energy-saving schemes are designed solely in compliance with prescriptive codes and lack consideration of the local situations, resulting in an unsatisfactory effect and a waste of funds. Moreover, the actual effect of the design has yet to be thoroughly verified through field tests. In this study, a method of modifying conventional building energy-saving design based on research into the local climate and residents’ living habits was proposed, and residential buildings in Panzhihua, China were selected for trial. Further, the modification scheme was implemented in an actual project with its effect verified by field tests. Research grasps the precise climate features of Panzhihua, which was previously not provided, and concludes that Panzhihua is a hot summer and warm winter zone. Accordingly, the original internal insulation was canceled, and the shading performance of the windows was strengthened instead. Test results suggest that the consequent change of SET* does not exceed 0.5 °C, whereas variations in the energy consumption depend on the room orientation. For rooms receiving less solar radiation, the average energy consumption increased by approximately 20%, whereas for rooms with a severe western exposure, the average energy consumption decreased by approximately 11%. On the other hand, the cost savings of removing the insulation layer are estimated at 177 million RMB (1 USD ≈ 6.5 RMB) per year. In conclusion, the research-based modification method proposed in this study can be an effective tool for improving building energy efficiency adapted to local conditions.


2014 ◽  
Vol 953-954 ◽  
pp. 1481-1487
Author(s):  
Liu Jin

Windows energy saving design of residential buildings has increasingly got the attention of people. Through a large number of surveys and analysis of residential buildings in Chongqing and consumers personal experience, the author finds problems and deficiency, and then proposes principles of residential buildings sun shading reconstruction in Chongqing city. Taking the high-rise residential building of one university in Chongqing as reconstruction sample, selecting a specific time period, the author recalculates sun shading coefficient with and without sun shading by using Ecotect software to do simulation analysis. Finally, the reasonable reconstruction design pattern is put forward through cases. Keywords: Buildings Sun Shading, Sun Shading Reconstruction, Energy Saving


2018 ◽  
Vol 33 ◽  
pp. 02047 ◽  
Author(s):  
Inessa Lukmanova ◽  
Roman Golov

The paper analyzes modern energy-efficient technologies, both being applied, and only introduced into the application in the construction of high-rise residential buildings. All technologies are systematized by the authors as part of a unified model of "Arrows of Energy-Efficient Technologies", which imply performing energy-saving measures in the design, construction and operation of buildings.


2017 ◽  
Vol 05 (04) ◽  
pp. 1750022
Author(s):  
Wei JIANG ◽  
Xuhui ZHANG

Despite China's significant progress in energy saving renovations, during the past 10 years, problems about inefficiencies remain. In the Netherlands, the energy labeling system (ELS) effectively linked policy objectives and market forces, combined with the stepped tariffs aimed at the performance of energy-saving renovation, generating a virtuous cycle of housing energy efficiency upgrading. China may draw the experience from Netherlands. In this regard, the authors probe the market effect and operating mechanism of the Dutch ELS and the stepped tariffs. The theory of multi-level governance (MLG) is introduced to the filed investigations both in China and the Netherlands. Based on the group-interviews and depth-interviews with the officials in related agencies and the residents of retrofitting housing, the authors obtained first-hand information to ensure a close case study on Netherlands' housing ELS and its implementation, in order to provide some enlightenment for China's existing housing renovation and low carbon development.


2018 ◽  
Vol 10 (7) ◽  
pp. 2548 ◽  
Author(s):  
Mariangela De Vita ◽  
Paolo Beccarelli ◽  
Eleonora Laurini ◽  
Pierluigi De Berardinis

The aim of this research, carried out in collaboration with Maco Technology Inc., was to analyse the energy performance of temporary textile structures that are often used to host itinerant events. This paper illustrates the dynamic simulations carried on the Ducati Pavilion, designed by Maco Technology, which hosted Ducati staff during the different stages of the Superbike World Championship. Specific aspects relating to the structural/constructive system of the project were also analysed. The theme of energy saving and carbon reduction is of great importance in temporary and itinerant structures and environmental sustainability in relation to the materials used, storage, re-use, mode of transport and ability to respond efficiently to the climatic conditions of the installation sites is an important aspect. The Ducati Pavilion was modelled and analysed from an energy point of view using Design Builder software. Ways of improving performance were analysed under summer conditions. The paper focuses on the importance of optimizing the performance of textile envelopes: the methodology proposed allows visible savings in terms of energy consumption and achieves good levels of environmental comfort in temporary buildings with low thermal mass structure.


Sign in / Sign up

Export Citation Format

Share Document