scholarly journals Performance Analyses of Temporary Membrane Structures: Energy Saving and CO2 Reduction through Dynamic Simulations of Textile Envelopes

2018 ◽  
Vol 10 (7) ◽  
pp. 2548 ◽  
Author(s):  
Mariangela De Vita ◽  
Paolo Beccarelli ◽  
Eleonora Laurini ◽  
Pierluigi De Berardinis

The aim of this research, carried out in collaboration with Maco Technology Inc., was to analyse the energy performance of temporary textile structures that are often used to host itinerant events. This paper illustrates the dynamic simulations carried on the Ducati Pavilion, designed by Maco Technology, which hosted Ducati staff during the different stages of the Superbike World Championship. Specific aspects relating to the structural/constructive system of the project were also analysed. The theme of energy saving and carbon reduction is of great importance in temporary and itinerant structures and environmental sustainability in relation to the materials used, storage, re-use, mode of transport and ability to respond efficiently to the climatic conditions of the installation sites is an important aspect. The Ducati Pavilion was modelled and analysed from an energy point of view using Design Builder software. Ways of improving performance were analysed under summer conditions. The paper focuses on the importance of optimizing the performance of textile envelopes: the methodology proposed allows visible savings in terms of energy consumption and achieves good levels of environmental comfort in temporary buildings with low thermal mass structure.

2016 ◽  
Vol 12 (2) ◽  
pp. 165-172 ◽  
Author(s):  
Giovanni A. Longo ◽  
Giulia Righetti ◽  
Claudio Zilio

Abstract This paper presents the comparative analysis of a traditional raw milk dispenser and an innovative prototype based on nanofluid technology. The traditional raw milk dispenser consists of an off-the-shelf upright air-cooled refrigerator sold on the market, whereas the innovative prototype presents a tank equipped with a serpentine tube jacket operated with Al2O3–ethylene glycol aqueous solution nanofluid. The systems are experimentally analysed in the ambient temperature range of 19–35°C to evaluate the energy performance and the temperature control of the milk tank. The innovative prototype is demonstrated to be superior from the point of view of both energy saving and food safety. In fact, the innovative prototype exhibits a 63–70% energy saving with respect to the traditional one. Furthermore, the prototype distributor is able to reach the “safe” temperature of 4°C in about half of the time required by traditional system and it keeps the milk always in the “safe” temperature range 2–3°C, while the traditional distributor displays locally milk temperature higher than 4°C.


2021 ◽  
Author(s):  
Tasnuva Ahmed

The building industry is striving for environmental friendly and energy efficient facility developments, as we have used most of our natural resources for comfortable living. Therefore energy efficient houses are very significant to reduce energy consumption. Thermal mass can be used as one of the many techniques of energy efficiency in the housing industry. Thermal mass can store heat in it which can be released at a later time. This behaviour of thermal mass can play a significant role in heating and cooling energy consumption of houses. This study investigates the impact of thermal mass on heating and cooling energy performance of a detached house and a row attached house, which are two main types of housing in Canada. Energy Plus simulation software has been used in the study. Also the study includes two different climatic conditions in Canada, such as Toronto and Vancouver, to envision how thermal mass behaviour changes with climates. All these different studies show thermal mass has significant impact on reduced energy consumption (15% savings in Vancouver for CCHT house) and lowering indoor air temperature. Other strategies such as insulation high R value, increased south face glazing and reduced glazing U value have been integrated with thermal mass to see energy performance in both climates. It hows more energy reduction than only thermal mass strategy. For instance, in CCHT house insulation high R value with concrete high mass reduces maximum 27% of total energy for Vancouver location.


2021 ◽  
Author(s):  
Tasnuva Ahmed

The building industry is striving for environmental friendly and energy efficient facility developments, as we have used most of our natural resources for comfortable living. Therefore energy efficient houses are very significant to reduce energy consumption. Thermal mass can be used as one of the many techniques of energy efficiency in the housing industry. Thermal mass can store heat in it which can be released at a later time. This behaviour of thermal mass can play a significant role in heating and cooling energy consumption of houses. This study investigates the impact of thermal mass on heating and cooling energy performance of a detached house and a row attached house, which are two main types of housing in Canada. Energy Plus simulation software has been used in the study. Also the study includes two different climatic conditions in Canada, such as Toronto and Vancouver, to envision how thermal mass behaviour changes with climates. All these different studies show thermal mass has significant impact on reduced energy consumption (15% savings in Vancouver for CCHT house) and lowering indoor air temperature. Other strategies such as insulation high R value, increased south face glazing and reduced glazing U value have been integrated with thermal mass to see energy performance in both climates. It hows more energy reduction than only thermal mass strategy. For instance, in CCHT house insulation high R value with concrete high mass reduces maximum 27% of total energy for Vancouver location.


2019 ◽  
Vol 3 (1) ◽  
pp. 14
Author(s):  
Amir Ghoreishi

Exterior Thermal Mass (eTM) is known to improve building energy and thermal comfort performance. Despite its known benefits, studies to date have not thoroughly addressed the effects of eTM on building environmental performance by considering a wide range of influential factors and various climatic conditions. This paper addresses such a gap in the body of knowledge by conducting a comprehensive and detailed analysis of eTM impacts on residential buildings’ energy performance. Using quantitative research and simulation analyses, this study has found various trends of energy reductions and, in a few cases, energy increases depending upon the location of projects. In fact, the cooling energies are shown to increase of up to 4% for the scenario of 20 cm thickness wall in several locations. Aiming for better energy and design load scenarios, this research has also established the optimal eTM depth to help architects and engineers make informed design decisions with regard to building envelopes, which is particularly important for developing countries with similar climates studied in this paper, where the use of masonry materials is widely common. As for future steps, further exploration of cooling energy increase phenomenon, which was observed for several climates is recommended. Also, coupling eTM with code-required thermal insulation based upon specific climatic locations and evaluate their integrated performance can be considered.


Author(s):  
Erik Schmerse ◽  
Charles Ikutegbe ◽  
Amar Auckaili ◽  
Mohammed Farid

A characteristic feature of lightweight constructions is their low thermal mass which causes high internal temperature fluctuations that require high heating and cooling demand throughout the year. Phase Change Materials (PCMs) is effective in providing thermal inertia to low thermal mass buildings. The aim of this paper is to analyse the thermal behaviour of two proposed lightweight buildings designed for homeless people and to investigate the potential benefit achievable through the use of different types of PCM in the temperate climatic conditions of Christchurch, New Zealand. For this purpose, over 300 numerical simulations have been conducted using the simulation software DesignBuilder®. The bulk of the simulations were carried out under the assumption that the whole opaque building envelope is equipped with PCM. The results showed significant energy saving and comfort enhancement through the application of PCMs. Thereby, annual energy saving of over 50 % was reached for some of the PCMs considered. Additionally, the effectiveness of single, PCM-equipped structure components was investigated and substantial benefits between 19 and 27 % annual energy saving were achieved. However, occupant behaviour in terms of ventilation habits, occupancy of zones etc. remains one of the biggest challenges in any simulation work due to insufficient data.


2020 ◽  
pp. 50-64
Author(s):  
Kuladeep Kumar Sadevi ◽  
Avlokita Agrawal

With the rise in awareness of energy efficient buildings and adoption of mandatory energy conservation codes across the globe, significant change is being observed in the way the buildings are designed. With the launch of Energy Conservation Building Code (ECBC) in India, climate responsive designs and passive cooling techniques are being explored increasingly in building designs. Of all the building envelope components, roof surface has been identified as the most significant with respect to the heat gain due to the incident solar radiation on buildings, especially in tropical climatic conditions. Since ECBC specifies stringent U-Values for roof assembly, use of insulating materials is becoming popular. Along with insulation, the shading of the roof is also observed to be an important strategy for improving thermal performance of the building, especially in Warm and humid climatic conditions. This study intends to assess the impact of roof shading on building’s energy performance in comparison to that of exposed roof with insulation. A typical office building with specific geometry and schedules has been identified as base case model for this study. This building is simulated using energy modelling software ‘Design Builder’ with base case parameters as prescribed in ECBC. Further, the same building has been simulated parametrically adjusting the amount of roof insulation and roof shading simultaneously. The overall energy consumption and the envelope performance of the top floor are extracted for analysis. The results indicate that the roof shading is an effective passive cooling strategy for both naturally ventilated and air conditioned buildings in Warm and humid climates of India. It is also observed that a fully shaded roof outperforms the insulated roof as per ECBC prescription. Provision of shading over roof reduces the annual energy consumption of building in case of both insulated and uninsulated roofs. However, the impact is higher for uninsulated roofs (U-Value of 3.933 W/m2K), being 4.18% as compared to 0.59% for insulated roofs (U-Value of 0.33 W/m2K).While the general assumption is that roof insulation helps in reducing the energy consumption in tropical buildings, it is observed to be the other way when insulation is provided with roof shading. It is due to restricted heat loss during night.


2021 ◽  
Vol 13 (6) ◽  
pp. 3502
Author(s):  
Somnath Bandyopadhyay ◽  
Aviram Sharma ◽  
Satiprasad Sahoo ◽  
Kishore Dhavala ◽  
Prabhakar Sharma

Among the several options of managed aquifer recharge (MAR) techniques, the aquifer storage and recovery (ASR) is a well-known sub-surface technique to replenish depleted aquifers, which is contingent upon the selection of appropriate sites. This paper explores the potential of ASR for groundwater recharge in the hydrological, hydrogeological, social, and economic context of South Bihar in India. Based on the water samples from more than 137 wells and socio-economic surveys, ASR installations were piloted through seven selected entrepreneurial farmers in two villages of South Bihar. The feasibility of ASR in both hard rock and deep alluvial aquifers was demonstrated for the prominent aquifer types in the marginal alluvial plains of South Bihar and elsewhere. It was postulated through this pilot study that a successful spread of ASR in South Bihar can augment usable water resources for agriculture during the winter cropping season. More importantly, ASR can adapt to local circumstances and challenges under changing climatic conditions. The flexible and participatory approach in this pilot study also allowed the farmers to creatively engage with the design and governance aspects of the recharge pit. The entrepreneurial farmers-led model builds local accountability, creates avenues for private investments, and opens up the space for continued innovation in technology and management, while also committing to resource distributive justice and environmental sustainability.


Energies ◽  
2021 ◽  
Vol 14 (10) ◽  
pp. 2753
Author(s):  
Miroslaw Zukowski ◽  
Walery Jezierski

According to the authors of this paper, the mathematical point of view allows us to see what sometimes cannot be seen from the designer’s point of view. The aim of this study was to estimate the influence of the most important parameters (volume of heat storage tanks, daily consumption of domestic hot water, optical efficiency, heat loss coefficient, and total area of a solar collector) on the thermal power output of solar domestic hot water (SDHW) system in European climatic conditions. Three deterministic mathematical models of these relationships for Madrid, Budapest, and Helsinki were created. The database for the development of these models was carried out using computer simulations made in the TRNSYS software environment. The SDHW system located at the Bialystok University of Technology (Poland) was the source of the measurement results used to validate the simulation model. The mathematical optimization procedure showed that the maximum annual useful energy output that can be obtained from 1 m2 of gross collector area is 1303 kWh in the case of Madrid, 918.5 kWh for Budapest, and 768 kWh for Helsinki weather conditions.


Processes ◽  
2021 ◽  
Vol 9 (6) ◽  
pp. 1013
Author(s):  
Ján Derco ◽  
Andreja Žgajnar Gotvajn ◽  
Oľga Čižmárová ◽  
Jozef Dudáš ◽  
Lenka Sumegová ◽  
...  

Micropollutants and emerging substances pose a serious problem to environmental sustainability and remediation, due to their widespread use and applications in everyday life. This group of chemicals is diverse but with common toxic and harmful properties. Their concentration in the environment is often very low; however, due to their recalcitrant nature, they are persistent in air, water, and soil. From an engineering point of view, the challenge is not straightforward. It is difficult to remove these contaminants from complex mixtures of substances by conventional methods used in wastewater and drinking water treatment. Ozonation and ozone-based AOPs are accepted processes of degradation of resistant substances or at least enhancement of their biodegradability. The aim of this review paper is to present research trends aimed at solving problems in the research and application of ozone-based processes in the removal of micropollutants from wastewater, thus preventing leakage of harmful substances into surface water, soil, and groundwater and facilitating the reuse of wastewater. Priority substances, micropollutants and emerging pollutants, as well as processes and technologies for their transformation and elimination, are briefly specified. Results obtained by the authors in solving research projects that were aimed at eliminating selected micropollutants by ozonation and ozone-based AOPs are also presented. This review focuses on selected alkylphenols, petroleum substances, and organochlorine pesticides.


Sign in / Sign up

Export Citation Format

Share Document