scholarly journals MAIAD: A Multistage Asymmetric Information Attack and Defense Model Based on Evolutionary Game Theory

Symmetry ◽  
2019 ◽  
Vol 11 (2) ◽  
pp. 215 ◽  
Author(s):  
Yu Yang ◽  
Bichen Che ◽  
Yang Zeng ◽  
Yang Cheng ◽  
Chenyang Li

With the rapid development and widespread applications of Internet of Things (IoT) systems, the corresponding security issues are getting more and more serious. This paper proposes a multistage asymmetric information attack and defense model (MAIAD) for IoT systems. Under the premise of asymmetric information, MAIAD extends the single-stage game model with dynamic and evolutionary game theory. By quantifying the benefits for both the attack and defense, MAIAD can determine the optimal defense strategy for IoT systems. Simulation results show that the model can select the optimal security defense strategy for various IoT systems.

2021 ◽  
Vol 2021 ◽  
pp. 1-15
Author(s):  
Yanhua Liu ◽  
Hui Chen ◽  
Hao Zhang ◽  
Ximeng Liu

Evolutionary game theory is widely applied in network attack and defense. The existing network attack and defense analysis methods based on evolutionary games adopt the bounded rationality hypothesis. However, the existing research ignores that both sides of the game get more information about each other with the deepening of the network attack and defense game, which may cause the attacker to crack a certain type of defense strategy, resulting in an invalid defense strategy. The failure of the defense strategy reduces the accuracy and guidance value of existing methods. To solve the above problem, we propose a reward value learning mechanism (RLM). By analyzing previous game information, RLM automatically incentives or punishes the attack and defense reward values for the next stage, which reduces the probability of defense strategy failure. RLM is introduced into the dynamic network attack and defense process under incomplete information, and a multistage evolutionary game model with a learning mechanism is constructed. Based on the above model, we design the optimal defense strategy selection algorithm. Experimental results demonstrate that the evolutionary game model with RLM has better results in the value of reward and defense success rate than the evolutionary game model without RLM.


Energies ◽  
2020 ◽  
Vol 13 (8) ◽  
pp. 2065
Author(s):  
Shuxia Yang ◽  
Xianguo Zhu ◽  
Shengjiang Peng

In recent years, China’s terminal clean power replacement construction has experienced rapid development, and China’s installed photovoltaic and wind energy capacity has soared to become the highest in the world. Precise and effective prediction of the scale of terminal clean power replacement can not only help make reasonable adjustments to the proportion of clean power capacity, but also promote the reduction of carbon emissions and enhance environmental benefits. In order to predict the prospects of China’s terminal clean energy consumption, first of all, the main factors affecting the clean power of the terminal are screened by using the grey revelance theory. Then, an evolutionary game theory (EGT) optimized least squares support vector machine (LSSVM) machine intelligence algorithm and an adaptive differential evolution (ADE) algorithm are applied in the example analysis, and empirical analysis shows that this model has a strong generalization ability, and that the prediction result is better than other models. Finally, we use the EGT–ADE–LSSVM combined model to predict China’s terminal clean energy consumption from 2019 to 2030, which showed that the prospect of China’s terminal clean power consumption is close to forty thousand billion KWh.


2019 ◽  
Vol 2019 ◽  
pp. 1-17
Author(s):  
Zhu Bai ◽  
Mingxia Huang ◽  
Shuai Bian ◽  
Huandong Wu

The emergence of online car-hailing service provides an innovative approach to vehicle booking but has negatively influenced the taxi industry in China. This paper modeled taxi service mode choice based on evolutionary game theory (EGT). The modes included the dispatching and online car-hailing modes. We constructed an EGT framework, including determining the strategies and the payoff matrix. We introduced different behaviors, including taxi company management, driver operation, and passenger choice. This allowed us to model the impact of these behaviors on the evolving process of service mode choice. The results show that adjustments in taxi company, driver, and passenger behaviors impact the evolutionary path and convergence speed of our evolutionary game model. However, it also reveals that, regardless of adjustments, the stable states in the game model remain unchanged. The conclusion provides a basis for studying taxi system operation and management.


Sign in / Sign up

Export Citation Format

Share Document