scholarly journals Parametric Model for Kitchen Product Based on Cubic T-Bézier Curves with Symmetry

Symmetry ◽  
2020 ◽  
Vol 12 (4) ◽  
pp. 505
Author(s):  
Xin Sun ◽  
Xiaomin Ji

The parametric method of product design is a pivotal and practical technique in computer-aided design and manufacturing (CAD/CAM) and used in many manufacturing sectors. In this paper, we presented a novel parametric method to design a kitchen product in the residential environment, a kitchen cabinet, by using cubic T-Bézier curves with constraints of geometric continuities. First, we introduced a class of cubic T-Bézier curves with two shape parameters and derived the G1 and G2 continuity conditions of the cubic T-Bézier curves. Then, we constructed shape-controlled complex contour curves of the kitchen cabinet by using closed composite cubic T-Bézier curves. The shapes of the contour curves can be adjusted intuitively and predictably by altering the values of the shape parameters. Finally, we studied shape optimization and representation of ellipses for the contour curves of the kitchen cabinet by finding optimal shape parameters and applicable control points respectively. The provided modeling examples showed that our method in this paper can improve the design and scheme adjustment effectively in the conceptual design stage of kitchen products.

Symmetry ◽  
2019 ◽  
Vol 11 (10) ◽  
pp. 1242
Author(s):  
Hu ◽  
Qiao ◽  
Qin ◽  
Wei

SG-Bézier curves have become a useful tool for shape design and geometric representation in computer aided design (CAD), owed to their good geometric properties, e.g., symmetry and convex hull property. Aiming at the problem of approximate degree reduction of SG-Bézier curves, a method is proposed to reduce the n-th SG-Bézier curves to m-th (m < n) SG-Bézier curves. Starting from the idea of grey wolf optimizer (GWO) and combining the geometric properties of SG-Bézier curves, this method converts the problem of multi-degree reduction of SG-Bézier curves into solving an optimization problem. By choosing the fitness function, the approximate multi-degree reduction of SG-Bézier curves with adjustable shape parameters is realized under unrestricted and corner interpolation constraints. At the same time, some concrete examples of degree reduction and its errors are given. The results show that this method not only achieves good degree reduction effect, but is also easy to implement and has high accuracy.


2019 ◽  
Vol 9 (11) ◽  
pp. 2339 ◽  
Author(s):  
Fan Liu ◽  
Xiaomin Ji ◽  
Gang Hu ◽  
Jing Gao

In this paper, a new parameterized surface, termed SQ-Coons surface, is proposed according to the build mode of Coons patch. The surface is always interpolated to the boundary curves, and its shape details could be controlled by the shape parameters in CE-Bézier basis functions, which makes it suitable for styling design in computer aided design (CAD). In order to exert its geometric advantages in car design, a simplified body CAD template based on characteristic lines is built according to common vehicle features. The template is built entirely from SQ-Coons surfaces, so that the overall style and detail shapes could all be modified by the control points and shape parameters of each surface. By analyzing the curvature of fifty commercial car types generated through the template and various parameters, a set of methods for constraining the range of shape parameters is proposed. On this basis, as an example, the four shape parameters of the hood surface in one model are used as variables to optimize the body shape to achieve the lowest possible aerodynamic drag coefficient in computational fluid dynamics (CFD). The results show that the design method, combining the new surface and the model template, could reflect the modeling characteristics of different cars, and improve the design and scheme adjustment efficiency in the conceptual design stage.


2011 ◽  
Vol 48-49 ◽  
pp. 877-880
Author(s):  
Qing Xian Meng ◽  
Hui Li Liu

Regularity is one of important properties of curves in computer aided design. In this paper, we convert the problem of determining regularity of Bézier curves to that of detecting existence of zero points of polynomials. Based on the properties of algebraic equations and isolation theorem of roots, a simple and practical method is presented. Regularity of Bézier curves and number of singular points can be determined by easier computation.


Symmetry ◽  
2018 ◽  
Vol 10 (11) ◽  
pp. 545 ◽  
Author(s):  
Gang Hu ◽  
Cuicui Bo ◽  
Junli Wu ◽  
Guo Wei ◽  
Fei Hou

The modeling of free-form engineering complex curves is an important subject in product modeling, graphics, and computer aided design/computer aided manufacturing (CAD/CAM). In this paper, we propose a novel method to construct free-form complex curves using shape-adjustable generalized Bézier (or SG-Bézier, for short) curves with constraints of geometric continuities. In order to overcome the difficulty that most of the composite curves in engineering cannot often be constructed by using only a single curve, we propose the necessary and sufficient conditions for G1 and G2 continuity between two adjacent SG-Bézier curves. Furthermore, the detailed steps of smooth continuity for two SG-Bézier curves, and the influence rules of shape parameters on the composite curves, are studied. We also give some important applications of SG-Bézier curves. The modeling examples show that our methods in this paper are very effective, can easily be performed, and can provide an alternative powerful strategy for the design of complex curves.


Author(s):  
A. N. Bozhko

Computer-aided design of assembly processes (Computer aided assembly planning, CAAP) of complex products is an important and urgent problem of state-of-the-art information technologies. Intensive research on CAAP has been underway since the 1980s. Meanwhile, specialized design systems were created to provide synthesis of assembly plans and product decompositions into assembly units. Such systems as ASPE, RAPID, XAP / 1, FLAPS, Archimedes, PRELEIDES, HAP, etc. can be given, as an example. These experimental developments did not get widespread use in industry, since they are based on the models of products with limited adequacy and require an expert’s active involvement in preparing initial information. The design tools for the state-of-the-art full-featured CAD/CAM systems (Siemens NX, Dassault CATIA and PTC Creo Elements / Pro), which are designed to provide CAAP, mainly take into account the geometric constraints that the design imposes on design solutions. These systems often synthesize technologically incorrect assembly sequences in which known technological heuristics are violated, for example orderliness in accuracy, consistency with the system of dimension chains, etc.An AssemBL software application package has been developed for a structured analysis of products and a synthesis of assembly plans and decompositions. The AssemBL uses a hyper-graph model of a product that correctly describes coherent and sequential assembly operations and processes. In terms of the hyper-graph model, an assembly operation is described as shrinkage of edge, an assembly plan is a sequence of shrinkages that converts a hyper-graph into the point, and a decomposition of product into assembly units is a hyper-graph partition into sub-graphs.The AssemBL solves the problem of minimizing the number of direct checks for geometric solvability when assembling complex products. This task is posed as a plus-sum two-person game of bicoloured brushing of an ordered set. In the paradigm of this model, the brushing operation is to check a certain structured fragment for solvability by collision detection methods. A rational brushing strategy minimizes the number of such checks.The package is integrated into the Siemens NX 10.0 computer-aided design system. This solution allowed us to combine specialized AssemBL tools with a developed toolkit of one of the most powerful and popular integrated CAD/CAM /CAE systems.


Materials ◽  
2021 ◽  
Vol 14 (14) ◽  
pp. 3819
Author(s):  
Ting-Hsun Lan ◽  
Yu-Feng Chen ◽  
Yen-Yun Wang ◽  
Mitch M. C. Chou

The computer-aided design/computer-aided manufacturing (CAD/CAM) fabrication technique has become one of the hottest topics in the dental field. This technology can be applied to fixed partial dentures, removable dentures, and implant prostheses. This study aimed to evaluate the feasibility of NaCaPO4-blended zirconia as a new CAD/CAM material. Eleven different proportional samples of zirconia and NaCaPO4 (xZyN) were prepared and characterized by X-ray diffractometry (XRD) and Vickers microhardness, and the milling property of these new samples was tested via a digital optical microscope. After calcination at 950 °C for 4 h, XRD results showed that the intensity of tetragonal ZrO2 gradually decreased with an increase in the content of NaCaPO4. Furthermore, with the increase in NaCaPO4 content, the sintering became more obvious, which improved the densification of the sintered body and reduced its porosity. Specimens went through milling by a computer numerical control (CNC) machine, and the marginal integrity revealed that being sintered at 1350 °C was better than being sintered at 950 °C. Moreover, 7Z3N showed better marginal fit than that of 6Z4N among thirty-six samples when sintered at 1350 °C (p < 0.05). The milling test results revealed that 7Z3N could be a new CAD/CAM material for dental restoration use in the future.


Materials ◽  
2021 ◽  
Vol 14 (8) ◽  
pp. 1986
Author(s):  
Andreas Koenig ◽  
Julius Schmidtke ◽  
Leonie Schmohl ◽  
Sibylle Schneider-Feyrer ◽  
Martin Rosentritt ◽  
...  

The performance of dental resin-based composites (RBCs) heavily depends on the characteristic properties of the individual filler fraction. As specific information regarding the properties of the filler fraction is often missing, the current study aims to characterize the filler fractions of several contemporary computer-aided design/computer-aided manufacturing (CAD/CAM) RBCs from a material science point of view. The filler fractions of seven commercially available CAD/CAM RBCs featuring different translucency variants were analysed using Scanning Electron Microscopy (SEM) with Energy Dispersive X-ray Spectroscopy (EDS), Micro-X-ray Computed Tomography (µXCT), Thermogravimetric Analysis (TG) and X-ray Diffractometry (XRD). All CAD/CAM RBCs investigated included midifill hybrid type filler fractions, and the size of the individual particles was clearly larger than the individual specifications of the manufacturer. The fillers in Shofu Block HC featured a sphericity of ≈0.8, while it was <0.7 in all other RBCs. All RBCs featured only X-ray amorphous phases. However, in Lava Ultimate, zircon crystals with low crystallinity were detected. In some CAD/CAM RBCs, inhomogeneities (X-ray opaque fillers or pores) with a size <80 µm were identified, but the effects were minor in relation to the total volume (<0.01 vol.%). The characteristic parameters of the filler fraction in RBCs are essential for the interpretation of the individual material’s mechanical and optical properties.


Materials ◽  
2021 ◽  
Vol 14 (6) ◽  
pp. 1401
Author(s):  
Doo-Bin Song ◽  
Man-So Han ◽  
Si-Chul Kim ◽  
Junyong Ahn ◽  
Yong-Woon Im ◽  
...  

This study investigated the fitting accuracy of titanium alloy fixed dental prostheses (FDP) after sequential CAD/CAM (Computer Aided Design/Computer Aided Manufacturing) fabrication. A three-unit FDP model connecting mandibular second premolars and molars was prepared and scanned to fabricate titanium FDPs by CAD/CAM milling. A total of six FDPs were sequentially milled in one titanium alloy disk using a new set of burs every time (n = 4). The fitting accuracy of FDPs was mesiodistally evaluated by a silicone replica technique and the measurement was triplicated at four different locations: MO (marginal opening), MG (marginal gap), AG (axial gap), and OG (occlusal gap). Data were statistically analyzed using ANOVA and Tukey’s HSD test. The fitting accuracy of PMMA (polymethyl methacrylate) FDPs milled using the worn or new bur were evaluated by the same procedure (n = 6). The mean dimensions of titanium FDP for all measuring positions, except for AG, were significantly increased from the third milling. However, no difference was noted between the first FDP and the second FDP milled with the same set of burs. Severe edge chippings were observed in all milling burs. Detrimental effects of the worn burs on the fitting accuracy were demonstrated in the CAD/CAM-milled PMMA FDP. The results recommend proper changing frequency of cutting burs to achieve the quality of fit and predictable outcomes for dental CAD/CAM prostheses.


Sign in / Sign up

Export Citation Format

Share Document