scholarly journals Pancreatic Cancer Early Detection Using Twin Support Vector Machine Based on Kernel

Symmetry ◽  
2020 ◽  
Vol 12 (4) ◽  
pp. 667
Author(s):  
Wismaji Sadewo ◽  
Zuherman Rustam ◽  
Hamidah Hamidah ◽  
Alifah Roudhoh Chusmarsyah

Early detection of pancreatic cancer is difficult, and thus many cases of pancreatic cancer are diagnosed late. When pancreatic cancer is detected, the cancer is usually well developed. Machine learning is an approach that is part of artificial intelligence and can detect pancreatic cancer early. This paper proposes a machine learning approach with the twin support vector machine (TWSVM) method as a new approach to detecting pancreatic cancer early. TWSVM aims to find two symmetry planes such that each plane has a distance close to one data class and as far as possible from another data class. TWSVM is fast in building a model and has good generalizations. However, TWSVM requires kernel functions to operate in the feature space. The kernel functions commonly used are the linear kernel, polynomial kernel, and radial basis function (RBF) kernel. This paper uses the TWSVM method with these kernels and compares the best kernel for use by TWSVM to detect pancreatic cancer early. In this paper, the TWSVM model with each kernel is evaluated using a 10-fold cross validation. The results obtained are that TWSVM based on the kernel is able to detect pancreatic cancer with good performance. However, the best kernel obtained is the RBF kernel, which produces an accuracy of 98%, a sensitivity of 97%, a specificity of 100%, and a running time of around 1.3408 s.

Author(s):  
Suhas S ◽  
Dr. C. R. Venugopal

An enhanced classification system for classification of MR images using association of kernels with support vector machine is developed and presented in this paper along with the design and development of content-based image retrieval (CBIR) system. Content of image retrieval is the process of finding relevant image from large collection of image database using visual queries. Medical images have led to growth in large image collection. Oriented Rician Noise Reduction Anisotropic Diffusion filter is used for image denoising. A modified hybrid Otsu algorithm termed is used for image segmentation. The texture features are extracted using GLCM method. Genetic algorithm with Joint entropy is adopted for feature selection. The classification is done by support vector machine along with various kernels and the performance is validated. A classification accuracy of 98.83% is obtained using SVM with GRBF kernel. Various features have been extracted and these features are used to classify MR images into five different categories. Performance of the MC-SVM classifier is compared with different kernel functions. From the analysis and performance measures like classification accuracy, it is inferred that the brain and spinal cord MRI classification is best done using MC- SVM with Gaussian RBF kernel function than linear and polynomial kernel functions. The proposed system can provide best classification performance with high accuracy and low error rate.


Author(s):  
Intisar Shadeed Al-Mejibli ◽  
Jwan K. Alwan ◽  
Dhafar Hamed Abd

Currently, the support vector machine (SVM) regarded as one of supervised machine learning algorithm that provides analysis of data for classification and regression. This technique is implemented in many fields such as bioinformatics, face recognition, text and hypertext categorization, generalized predictive control and many other different areas. The performance of SVM is affected by some parameters, which are used in the training phase, and the settings of parameters can have a profound impact on the resulting engine’s implementation. This paper investigated the SVM performance based on value of gamma parameter with used kernels. It studied the impact of gamma value on (SVM) efficiency classifier using different kernels on various datasets descriptions. SVM classifier has been implemented by using Python. The kernel functions that have been investigated are polynomials, radial based function (RBF) and sigmoid. UC irvine machine learning repository is the source of all the used datasets. Generally, the results show uneven effect on the classification accuracy of three kernels on used datasets. The changing of the gamma value taking on consideration the used dataset influences polynomial and sigmoid kernels. While the performance of RBF kernel function is more stable with different values of gamma as its accuracy is slightly changed.


2018 ◽  
Vol 3 (2) ◽  
pp. 194
Author(s):  
Lailil Muflikhah ◽  
Dimas Joko Haryanto

Sentiment analysis is a text mining based on the opinion collection towards the review of online product. Support Vector Machine (SVM) is an algorithm of classification that applicable to review the analysis of product. The hyperplane kernel function of SVM has importance role to classify the certain category. Therefore, this research is address to investigate the performance between Polynomial and Radial Basis Function (RBF) kernel functions for sentiment analysis of review product. They are examined to 200 comments using 10-fold validation and various parameter values (learning rate, lambda, c value, epsilon and iteration). As general, the performance for polynomial kernel of 88.75% is slightly higher than RBF kernel of 83.25%.


Author(s):  
Hao-yu Liao ◽  
Willie Cade ◽  
Sara Behdad

Abstract Accurate prediction of product failures and the need for repair services become critical for various reasons, including understanding the warranty performance of manufacturers, defining cost-efficient repair strategies, and compliance with safety standards. The purpose of this study is to use machine learning tools to analyze several parameters crucial for achieving a robust repair service system, including the number of repairs, the time of the next repair ticket or product failure, and the time to repair. A large dataset of over 530,000 repairs and maintenance of medical devices has been investigated by employing the Support Vector Machine (SVM) tool. SVM with four kernel functions is used to forecast the timing of the next failure or repair request in the system for two different products and two different failure types, namely random failure and physical damage. A frequency analysis is also conducted to explore the product quality level based on product failure and the time to repair it. Besides, the best probability distributions are fitted for the number of failures, the time between failures, and the time to repair. The results reveal the value of data analytics and machine learning tools in analyzing post-market product performance and the cost of repair and maintenance operations.


Author(s):  
B. Yekkehkhany ◽  
A. Safari ◽  
S. Homayouni ◽  
M. Hasanlou

In this paper, a framework is developed based on Support Vector Machines (SVM) for crop classification using polarimetric features extracted from multi-temporal Synthetic Aperture Radar (SAR) imageries. The multi-temporal integration of data not only improves the overall retrieval accuracy but also provides more reliable estimates with respect to single-date data. Several kernel functions are employed and compared in this study for mapping the input space to higher Hilbert dimension space. These kernel functions include linear, polynomials and Radial Based Function (RBF). <br><br> The method is applied to several UAVSAR L-band SAR images acquired over an agricultural area near Winnipeg, Manitoba, Canada. In this research, the temporal alpha features of H/A/α decomposition method are used in classification. The experimental tests show an SVM classifier with RBF kernel for three dates of data increases the Overall Accuracy (OA) to up to 3% in comparison to using linear kernel function, and up to 1% in comparison to a 3rd degree polynomial kernel function.


2012 ◽  
Vol 468-471 ◽  
pp. 2916-2919
Author(s):  
Fan Yang ◽  
Yu Chuan Wu

This paper describes how to use a posture sensor to validate human daily activity and by machine learning algorithm - Support Vector Machine (SVM) an outstanding model is built. The optimal parameter σ and c of RBF kernel SVM were obtained by searching automatically. Those kinematic data was carried out through three major steps: wavelet transformation, Principle Component Analysis (PCA) -based dimensionality reduction and k-fold cross-validation, followed by implementing a best classifier to distinguish 6 difference actions. As an activity classifier, the SVM (Support Vector Machine) algorithm is used, and we have achieved over 94.5% of mean accuracy in detecting differential actions. It shows that the verification approach based on the recognition of human activity detection is valuable and will be further explored in the near future.


2008 ◽  
Vol 22 (5) ◽  
pp. 397-404 ◽  
Author(s):  
Cun-Gui Cheng ◽  
Yu-Mei Tian ◽  
Wen-Ying Jin

This paper introduces a new method for the early detection of colon cancer using a combination of feature extraction based on wavelets for Fourier Transform Infrared Spectroscopy (FTIR) and classification using the Support Vector Machine (SVM). The FTIR data collected from 36 normal SD rats, 60 1,2-DMH-induced SD rats, and 44 second generation rats of those induced rats was first preprocessed. Then, 12 feature variants were extracted using continuous wavelet analysis. The extracted feature variants were then inputted into the SVM for classification of normal, dysplasia, early carcinoma, and advanced carcinoma. Among the kernel functions the SVM used, the Poly and RBF kernels had the highest accuracy rates. The accuracy of the Poly kernel in normal, dysplasia, early carcinoma, and advanced carcinoma were 100, 97.5, 95% and 100% respectively. The accuracy of RBF kernel in normal, dysplasia, early carcinoma, and advanced carcinoma was 100, 95, 95% and 100% respectively. The results indicated that this method could effectively and easily diagnose colon cancer in its early stages.


2015 ◽  
Vol 9 (1) ◽  
pp. 1076-1080 ◽  
Author(s):  
Lihong Gong ◽  
Zhuxin Li ◽  
Zhen Zhang

Metal magnetic memory (MMM) signals can reflect stress concentration and cracks on the surface of ferromagnetic components, but the traditional criteria used to distinguish the locations of these stress concentrations and cracks are not sufficiently accurate. In this study, 22 indices were extracted from the original MMM signals, and the diagnosis results of 4 kernel functions of support vector machine (SVM) were compared. Of these 4, the radial basis function (RBF) kernel performed the best in the simulations, with a diagnostic accuracy of 94.03%. Using the principles of adaptive genetic algorithms (AGA), a combined AGA-SVM diagnosis model was created, resulting in an improvement in accuracy to 95.52%, using the same training and test sets as those used in the simulation of SVM with an RBF kernel. The results show that AGA-SVM can accurately distinguish stress concentrations and cracks from normal points, enabling them to be located more accurately.


Author(s):  
Ilsya Wirasati ◽  
Zuherman Rustam ◽  
Jane Eva Aurelia ◽  
Sri Hartini ◽  
Glori Stephani Saragih

<span id="docs-internal-guid-9a30056f-7fff-8ff1-59e1-69f89f4280bd"><span>In the medical field, accurate classification of medical data is really important because of its impact on disease detection and patient’s treatment. Technology, machine learning, is needed to help medical staff to improve accuracy to classify disease. This research discussed some kernel functions, such as gaussian radial basis function (RBF) kernel, Polynomial kernel, and linear kernel with support vector machine (SVM) to classify thalassemia data. Thalassemia is a genetic blood disorder which is also one of the major public health problems. In this paper, there is an explanation about thalassemia, SVM, and some of the kernel functions that serve as a comprehensive source for the next research about this topic. Furthermore, there is a comparison result from three kernel functions to find out which one has the best performance. The result is gaussian RBF kernel with SVM is the best method with an average of accuracy 99,63%. </span></span>


2016 ◽  
Vol 16 (5) ◽  
pp. 5-14 ◽  
Author(s):  
Hao Huanrui

Abstract The pattern analysis technology based on kernel methods is a new technology, which combines good performance and strict theory. With support vector machine, pattern analysis is easy and fast. But the existing kernel function fits the requirement. In the paper, we explore the new mixed kernel functions which are mixed with Gaussian and Wavelet function, Gaussian and Polynomial kernel function. With the new mixed kernel functions, we check different parameters. The results shows that the new mixed kernel functions have good time efficiency and accuracy. In image recognition we used SVM with two mixed kernel functions, the mixed kernel function of Gaussian and Wavelet function are suitable for more states.


Sign in / Sign up

Export Citation Format

Share Document