scholarly journals A General Model for Describing the Ovate Leaf Shape

Symmetry ◽  
2021 ◽  
Vol 13 (8) ◽  
pp. 1524
Author(s):  
Peijian Shi ◽  
Kexin Yu ◽  
Karl J. Niklas ◽  
Julian Schrader ◽  
Yu Song ◽  
...  

Many plant species produce ovate leaves, but there is no general parametric model for describing this shape. Here, we used two empirical nonlinear equations, the beta and Lobry–Rosso–Flandrois (LRF) equations, and their modified forms (referred to as the Mbeta and MLRF equations for convenience), to generate bilaterally symmetrical curves along the x-axis to form ovate leaf shapes. In order to evaluate which of these four equations best describes the ovate leaf shape, we used 14 leaves from 7 Neocinnamomum species (Lauraceae) and 72 leaves from Chimonanthus praecox (Calycanthaceae). Using the AIC and adjusted root mean square error to compare the fitted results, the modified equations fitted the leaf shapes better than the unmodified equations. However, the MLRF equation provided the best overall fit. As the parameters of the MLRF equation represent leaf length, maximum leaf width, and the distance from leaf apex to the point associated with the maximum leaf width along the leaf length axis, these findings are potentially valuable for studying the influence of environmental factors on leaf shape, differences in leaf shape among closely related plant species with ovate leaf shapes, and the extent to which leaves are bilaterally symmetrical. This is the first work in which temperature-dependent developmental equations to describe the ovate leaf shape have been employed, as previous studies lacked similar leaf shape models. In addition, prior work seldom attempted to describe real ovate leaf shapes. Our work bridges the gap between theoretical leaf shape models and empirical leaf shape indices that cannot predict leaf shape profiles.

2008 ◽  
Vol 133 (3) ◽  
pp. 396-407 ◽  
Author(s):  
John R. Stommel ◽  
Robert J. Griesbach

Considerable diversity exists in Capsicum L. germplasm for fruit and leaf shape, size, and color as well as plant habit. Using F1, F2, and backcross generations developed from diverse parental stocks, this report describes the inheritance patterns and relationships between unique foliar characters and diverse fruit and plant habit attributes. Our results demonstrate that pepper fruit color, shape, and fruit per cluster were simply inherited with modifying gene action. Broad-sense heritability for fruit color and shape and fruit per cluster was high, whereas narrow-sense heritability for these characters was moderate to low. Although fruit clustering was simply inherited, the number of fruit per cluster exhibited a quantitative mode of inheritance. High fruit counts per cluster were linked with red fruit color and anthocyanin pigmented foliage. Fruit shape was linked with immature fruit color and inherited independently of mature fruit color. Leaf color, length, and plant height were quantitatively inherited. Leaf shape did not vary, but leaf length varied and was positively correlated with leaf width. Broad-sense heritability for leaf characters, including leaf length, leaf width, and leaf color, was high. With the exception of leaf width, which exhibited low narrow-sense heritability, high narrow-sense heritability for leaf characters denoted additive gene action. Plant height displayed high broad-sense heritability. Moderate narrow-sense heritability suggested that additive effects also influence plant height. Analysis of segregating populations demonstrated that red and orange fruit color can be combined with all possible leaf colors from green to black. These results provide new data to clarify and extend available information on the inheritance of Capsicum fruit attributes and provide new information on the genetic control of leaf characters and plant habit.


2020 ◽  
Vol 25 (4) ◽  
pp. 610-617
Author(s):  
Yusi Nurmalita Andarini ◽  
Higa Afza ◽  
Sutoro Sutoro

  Estimation of leaf area by using leaf length and leaf width variables could be done without destruction of the leaves from plants and more practical than using the leaf areameter. Surface area is a function of the variable length and width, so the leaf area can be measured based on leaf length and leaf width variables. The purpose of this research is to get the leaf area estimator model with nondestructive method. Taro plants were observed by using 12 accessions/varieties taken from the germplasm collection in Gene Bank Collection of ICABIOGRAD, IAARD. Observations of the length, width, and area of leaf were carried out on 10-12 leaf samples for each accession/variety from taro cultivation which was about 4 months old. The length (P), width (L), and area (Y) of each taro leaf were measured. The estimation of taro leaves area by regression equation was analyzed by using one (P or L) and two (P and L) independent variables. Estimation using two variables, leaf length and width, is better than only use one variable. Taro leaf area (Y) of each leaf can be determined by the equation Y = 0.9462 P x L for ratio of P/L less than 1.10, Y = 0.9109 P x L for ratio of P/L between 1.10-1.19, and Y = 0.8860 P x L for ratio of P/L equal or greater than 1.20. Keywords: model estimation, leaf area, taro


Forests ◽  
2020 ◽  
Vol 12 (1) ◽  
pp. 41
Author(s):  
Peijian Shi ◽  
Kexin Yu ◽  
Ülo Niinemets ◽  
Johan Gielis

Leaf shape is closely related to economics of leaf support and leaf functions, including light interception, water use, and CO2 uptake, so correct quantification of leaf shape is helpful for studies of leaf structure/function relationships. There are some extant indices for quantifying leaf shape, including the leaf width/length ratio (W/L), leaf shape fractal dimension (FD), leaf dissection index, leaf roundness index, standardized bilateral symmetrical index, etc. W/L ratio is the simplest to calculate, and recent studies have shown the importance of the W/L ratio in explaining the scaling exponent of leaf dry mass vs. leaf surface area and that of leaf surface area vs. leaf length. Nevertheless, whether the W/L ratio could reflect sufficient geometrical information of leaf shape has been not tested. The FD might be the most accurate measure for the complexity of leaf shape because it can characterize the extent of the self-similarity and other planar geometrical features of leaf shape. However, it is unknown how strongly different indices of leaf shape complexity correlate with each other, especially whether W/L ratio and FD are highly correlated. In this study, the leaves of nine Magnoliaceae species (>140 leaves for each species) were chosen for the study. We calculated the FD value for each leaf using the box-counting approach, and measured leaf fresh mass, surface area, perimeter, length, and width. We found that FD is significantly correlated to the W/L ratio and leaf length. However, the correlation between FD and the W/L ratio was far stronger than that between FD and leaf length for each of the nine species. There were no strong correlations between FD and other leaf characteristics, including leaf area, ratio of leaf perimeter to area, fresh mass, ratio of leaf fresh mass to area, and leaf roundness index. Given the strong correlation between FD and W/L, we suggest that the simpler index, W/L ratio, can provide sufficient information of leaf shape for similarly-shaped leaves. Future studies are needed to characterize the relationships among FD and W/L in leaves with strongly varying shape, e.g., in highly dissected leaves.


Planta Medica ◽  
2008 ◽  
Vol 74 (09) ◽  
Author(s):  
N Moodley ◽  
V Maharaj
Keyword(s):  

2015 ◽  
Vol 16 (1) ◽  
pp. 29-30 ◽  
Author(s):  
Carlye A. Baker ◽  
Scott Adkins

To the best of our knowledge, this is the first report of TCSV infection of H. wayetii and S. truncata from any location, although other tospoviruses are known to infect these and related plant species. The identification of these two diverse plant species as the first reported natural ornamental hosts of TCSV has implications for TCSV epidemiology and management in ornamental and vegetable crops, which frequently share production space. Accepted by publication 15 January 2015. Published 25 February 2015.


2017 ◽  
Vol 7 (4) ◽  
pp. 432-439 ◽  
Author(s):  
Seyed Mehdi Talebi ◽  
Reza Rezakhanlou ◽  
A V. Matsyura

<p><em>Salvia multicaulis</em> is a widespread species of Lamiaceae family in Iran. There are many discussions about its infraspecific variations. Although some varieties were definite for this species in various parts of the world, no infraspecific taxon was reported in Iran and all samples of this species were named as S. multicaulis. In this study, morphological characteristics of S. multicaulis populations, naturally growing in Iran, was examined. Twenty-two traits were examined in 94 individuals of this species to<br />identify their phenotypic difference. Most of the investigated features were showing a high degree of variability, but it was highly pronounced for some characteristics such as basal leaf shape, basal leaf width, basal leaf length/ width ratio and basal petiole length. Significant positive/negative correlations were observed between some morphological variables. Furthermore, significant negative correlations were found between the eastern distribution of populations with basal leaf petiole length and basal leaf length/ width ratio. Based on the UPGMA cluster analysis, populations were divided into two main branches. The first branch contained four populations, while the second branch was bigger and clustered in two sub-branches. In one of them,<br />three populations and in another one the rest populations arranged in two groups. CA joined plot confirmed that each of studied populations or group of populations had distinct morphological trait(s), which were useful in identification of them. Our findings supported population no. 13 had unique morphological traits such as the largest bracts and basal leaf petiole, highest flower number of each inflorescence cycle, widest and largest calyx. The conservation of the highly diverse populations of<br />Iranian S. multicaulis is recommended.</p>


2018 ◽  
Vol 13 (2) ◽  
pp. 73-78 ◽  
Author(s):  
Surtinah Surtinah ◽  
Seprita Lidar

Research conducted an experiment using a completely randomized design environment with four replications, and the design of treatment used is six varieties of sweet corn. Analysis of data using polynomial regression, the parameters measured were plant height, leaf number, leaf length, leaf width, and sugar beans, followed by analyzing the relationship between the growth of plants with a sugar content of sweet corn kernels. The results showed that leaf width gives a weak relationship to the sugar content of sweet corn seed, and leaf length, number of leaves and plant height had a close relationship to the sugar content of sweet corn kernels.


Author(s):  
Carolina K. Schnitzler ◽  
Caroline Turchetto ◽  
Marcelo C. Teixeira ◽  
Loreta B. Freitas

Sign in / Sign up

Export Citation Format

Share Document