scholarly journals The Effect of Cyanobacterial LPS Antagonist (CyP) on Cytokines and Micro-RNA Expression Induced by Porphyromonas gingivalis LPS

Toxins ◽  
2018 ◽  
Vol 10 (7) ◽  
pp. 290 ◽  
Author(s):  
Monica Molteni ◽  
Annalisa Bosi ◽  
Carlo Rossetti

Lipopolysaccharide (LPS) from Porphyromonas gingivalis (Pg-LPS) is a key bacterial structure involved in the maintenance of a chronic pro-inflammatory environment during periodontitis. Similar to other gram-negative LPS, Pg-LPS induces the release of pro-inflammatory cytokines through interaction with Toll-Like Receptor 4 (TLR4) and is able to stimulate negative TLR4 regulatory pathways, such as those involving microRNA (miRNA). In this work, we employed CyP, an LPS with TLR4-MD2 antagonist activity obtained from the cyanobacterium Oscillatoria planktothrix FP1, to study the effects on pro-inflammatory cytokine production and miRNA expression in human monocytic THP-1 cells stimulated with Pg-LPS or E. coli LPS (Ec-LPS). Results showed that CyP inhibited TNF-α, IL-1β and IL-8 expression more efficiently when co-incubated with Pg-LPS rather than with Ec-LPS. The inhibition of pro-inflammatory cytokine production was maintained even when CyP was added 2 h after LPS. The analysis of the effects of CyP on miRNA expression showed that, although being an antagonist, CyP did not inhibit miR-146a induced by Pg-LPS or Ec-LPS, whereas it significantly inhibited miR-155 only in the cultures stimulated with Ec-LPS. These results suggest that CyP may modulate the pro-inflammatory response induced by Pg-LPS, not only by blocking TLR4-MD2 complex, but also by preserving miR-146a expression.

Blood ◽  
2014 ◽  
Vol 124 (21) ◽  
pp. 457-457
Author(s):  
Tamisha Y. Vaughan-Whitley ◽  
Hikaru Nishio ◽  
Barry Imhoff ◽  
Zhengqi Wang ◽  
Silvia T. Bunting ◽  
...  

Abstract Macrophages are responsible for protecting the body against foreign invaders. We have been studying the role of Grb2-associated binding proteins (Gabs) in macrophage biology. In mice, Gabs are adaptor proteins that include three family members (Gab1, Gab2, and Gab3) that play critical regulatory roles in modulating cytokine receptor signaling. Gab2 knockout mice have no developmental defects but have impaired allergic responses, osteoclast defects, altered mast cell development, and altered hematopoiesis. Gab3 knockout mice have no defined phenotypes alone and although highly expressed in macrophages, a functional role was not found despite considerable focus on this cell type. Therefore, we set out to determine the combined role of Gab2 and Gab3 to determine whether they performed redundant functions not observable in single knockout mice. To analyze regulation of macrophage cytokine production, a Gab2/3 deficient mouse model was generated on the C57BL/6 background. Bone Marrow Derived Macrophages (BMDM) were expanded from the bone marrow (BM) of wild-type (WT), Gab2 and Gab3 single knockout and Gab2/3 knockout mice and found to similarly co-express CD11b and F4/80. However, Gab2/3 knockout BM produced only 30% of wild-type BMDM numbers. Despite reductions in BMDM absolute numbers, isolated BMDM demonstrated significant induction of pro-inflammatory cytokines TNF-α and IL-12 and anti-inflammatory cytokine IL-10 mRNA at baseline. Interestingly, after LPS stimulation (100ng/ml) we detected much greater induction of TNF-α and IL-12 mRNA and protein expression. Interestingly, despite increased IL-10 mRNA induction in Gab2/3 knockout BMDM, no IL-10 protein expression could be detected by Luminex assay. No changes were observed in production of interferon or STAT1 activation in these BMDM. Studies have shown that rapamycin treatment of macrophages suppresses mTORC1 and subsequently reduces IL-10 production and promotes pro-inflammatory cytokine production. Gab2 is known for its role in regulating the PI3K pathway through interactions with the p85 regulatory subunit of PI3K. Therefore, we also examined whether mTOR activation was effected by Gab2/3 deficiency causing altered cytokine expression. Deletion of Gab2/3 in BMDMs treated with LPS showed an inhibition of 4EBP1 phosphorylation and increased AKT phosphorylation. These results suggest that Gabs may play a critical role in modulating mTOR activation and potentially causing defects in protein translation that reflect in reduced IL-10 cytokine levels in Gab2/3 knockout cells. IL-10 has a critical immunoregulatory role that is dysregulated in patients with inflammatory bowel disease. IL-10 deficient mice develop colitis due to loss of mucosal immune tolerance. Strikingly, as early as two months of age in vivo 12/32 (37.5%) Gab2/3 knockout mice developed rectal prolapse and suffered from diarrhea within a six month period. Histological analysis of isolated colons using a scoring system confirmed spontaneous development of colitis in Gab2/3 knockout mice compared to no phenotypes observed in WT and single knockout controls. To determine whether the BM was directly involved in the disease, BM chimeras were generated using irradiated WT mice as recipients and Gab2/3 knockout mice as donors. Susceptible recipients receiving Gab2/3 knockout BM showed a more invasive colitis phenotype than the spontaneous disease and resulted in forced euthanization due to body weight decreases greater than 25%. Multiple ulcerations were present in most of the colon proximal region, with extensive epithelial damage, transmural inflammation, and in some mice adenocarcinoma. Notably, we did not observe adenocarcinoma in untransplanted Gab2/3 knockout mice, suggesting that epithelial deletion of Gab2/3 may suppress cancer whereas in the bone marrow chimera model, the epithelial cells are WT and can be transformed. Similar phenotypes were also observed in secondary transplant recipients. Lastly, treatment of Gab2/3 knockout mice with dextran-sodium-sulfate (DSS) induced rapid severe colitis that resulted in death of 80% and 40% of Gab2/3 knockout and WT mice respectively. Overall, these observations demonstrate a major redundant role for Gab2 and Gab3 in macrophage immune surveillance required for the prevention of colitis in mice. Disclosures No relevant conflicts of interest to declare.


Blood ◽  
2011 ◽  
Vol 118 (21) ◽  
pp. 3218-3218
Author(s):  
Thomas Luft ◽  
Andreas Wagner ◽  
Michael Conzelmann ◽  
Sascha Dietrich ◽  
Oliver Krämer ◽  
...  

Abstract Abstract 3218 Inhibition of JAK1 is an emerging clinical concept that has promise for a variety of autoimmune diseases, myeloproliferative diseases and post-transplant immunosuppression, but similarly raises concerns regarding immunosuppressive side effects. At the example of IL-12p70 production in human monocyte-derived dendritic cells we demonstrate that JAK1 has a dual role in differentially regulating effects of weak and strong activation stimuli. We have demonstrated recently that weak NF-kB-activating stimuli (e.g. CD40L or LPS) require complementary JAK1-targeting cytokines such as IFN-g to induce IL-12p70. This pathway involves RELA, CREL, JAK1 and/or JAK2, STAT1, IRF1 and IRF8 and is inhibited by RELB and TYK2 (Conzelmann et al. Biochem Pharm. 2010, 80(12):2074–86). Here we provide evidence for an alternative IL-12 stimulating pathway depending on strong NF-kB activating stimuli (e.g. intact E. coli or LPS plus IL-1b). siRNA silencing demonstrated that this pathway is specifically inhibited by JAK1 and the transcription factor STAT3, but is not influenced by any of the other JAK/STAT family members. Both IL-12p35 and p40 mRNA expression is directly inhibited by STAT3. Furthermore, ChIP-assays revealed that STAT3 binds directly to a combined STAT/NF-kB site at the IL-12p35 promoter without altering access of RELA and CREL. Extending the cytokine panel we found that E.coli-induced IL-6 and TNF-a production is similarly inhibited by the JAK1/STAT3 pathway whereas IL-10 expression is not affected. The observed dual effects of JAK1 are clearly confirmed by the JAK1/2 inhibitor INCB018424 (Ruxolitinib) which enhances E.coli-induced cytokines whilst strongly inhibiting cytokine production stimulated by CD40L/IFN-g. In summary, our study suggests that blockade of JAK1 specifically inhibits pro-inflammatory effects of weak, IFN-g dependent, NF-kB activating stimuli while enhancing inflammatory cytokine expression induced by strong activation stimuli. Inhibition of JAK1/2 by INCB018424 (Ruxolitinib) would therefore represent a novel immunosuppressive approach that may spare the immune defence against invading pathogens. Disclosures: No relevant conflicts of interest to declare.


1997 ◽  
Vol 56 ◽  
pp. 42
Author(s):  
N. Bessis ◽  
G. Chiocchia ◽  
G. Kollias ◽  
A. Minty ◽  
C. Fournier ◽  
...  

2016 ◽  
Vol 49 (7) ◽  
pp. 1214-1220 ◽  
Author(s):  
Morakot Likhitpanichkul ◽  
Olivia M. Torre ◽  
Jadry Gruen ◽  
Benjamin A. Walter ◽  
Andrew C. Hecht ◽  
...  

2019 ◽  
Vol 97 (11) ◽  
pp. 1028-1034 ◽  
Author(s):  
Yuanzhong Ren ◽  
Yongtao Zhang ◽  
Ze Wang ◽  
Changyao Wang ◽  
Haining Zhang ◽  
...  

Brd4 protein is an important epigenetic regulator involved in the process of inflammatory cytokine production in many diseases. However, whether and how Brd4 participates in the process of wear-particle-induced inflammation remain unclear. This study aimed to investigate the potential role of Brd4 in titanium (Ti) particle-induced inflammatory cytokine production in mouse macrophage RAW264.7 cells. Our experiment detected Brd4 expressed in both normal synovium and periprosthetic osteolysis interface membrane, but the expression increased in the interface membrane as compared with that in normal synovium. Treatment with Ti particles significantly increased TNF-α, IL-6, and IL-1β production in RAW264.7 cells, which was inhibited by JQ1 or Brd4-siRNA. Ti particles enhanced the expression of Brd4, which was abrogated by JQ1. Ti particles enhanced NF-κB p65 and IKK phosphorylation and attenuated IκBα protein expression, which were abrogated by JQ1. Co-immunoprecipitation analysis indicated that Ti particles promoted the binding of Brd4 to acetylated NF-κB p65 (lysine-310), which was also abrogated in JQ1-treated RAW264.7 cells. In conclusion, Brd4 expression increases in interface membrane and Brd4 participates in the production of pro-inflammatory cytokines induced by Ti particles via promoting the activation of NF-κB signaling and binding to acetylated NF-κB p65 (lysine-310) in mouse macrophages.


Sign in / Sign up

Export Citation Format

Share Document