scholarly journals Altered Gene Response to Aflatoxin B1 in the Spleens of Susceptible and Resistant Turkeys

Toxins ◽  
2019 ◽  
Vol 11 (5) ◽  
pp. 242 ◽  
Author(s):  
Kent M. Reed ◽  
Kristelle M. Mendoza ◽  
Roger A. Coulombe

Susceptibility and/or resistance to aflatoxin B1 (AFB1) is a threshold trait governed principally by glutathione S transferase (GST)-mediated detoxification. In poultry, domesticated turkeys are highly sensitive to AFB1, most likely due to dysfunction in hepatic GSTs. In contrast, wild turkeys are comparatively resistant to aflatoxicosis due to the presence of functional hepatic GSTAs and other possible physiological and immunological interactions. The underlying genetic basis for the disparate GST function in turkeys is unknown as are the broader molecular interactions that control the systemic response. This study quantifies the effects of dietary AFB1 on gene expression in the turkey spleen, specifically contrasting genetically distinct domesticated (DT, susceptible) and Eastern wild (EW, resistant) birds. Male turkey poults were subjected to a short-term AFB1 treatment protocol with feed supplemented with 320 ppb AFB1 beginning on day 15 of age and continuing for 14 days. Spleen tissues were harvested and subjected to deep RNA sequencing and transcriptome analysis. Analysis of differential gene expression found the effects of AFB1 treatment on the spleen transcriptomes considerably more prominent in the DT birds compared to EW. However, expression of the differentially expressed genes (DEGs) was directionally biased, with the majority showing higher expression in EW (i.e., down-regulation in DT). Significantly altered pathways included FXR/RXR and LXR/RXR activation, coagulation system, prothrombin activation, acute phase response, and atherosclerosis signaling. Differential extra-hepatic expression of acute phase protein genes was confirmed by quantitative real time PCR (qRT-PCR) in the original experiment and additional turkey lines. Results demonstrate that wild turkeys possess a capacity to more effectively respond to AFB1 exposure.

Toxins ◽  
2019 ◽  
Vol 11 (1) ◽  
pp. 55 ◽  
Author(s):  
Kent Reed ◽  
Kristelle Mendoza ◽  
Roger Coulombe

The nearly-ubiquitous food and feed-borne mycotoxin aflatoxin B1 (AFB1) is carcinogenic and mutagenic, posing a food safety threat to humans and animals. One of the most susceptible animal species known and thus a good model for characterizing toxicological pathways, is the domesticated turkey (DT), a condition likely due, at least in part, to deficient hepatic AFB1-detoxifying alpha-class glutathione S-transferases (GSTAs). Conversely, wild turkeys (Eastern wild, EW) are relatively resistant to the hepatotoxic, hepatocarcinogenic and immunosuppressive effects of AFB1 owing to functional gene expression and presence of functional hepatic GSTAs. This study was designed to compare the responses in gene expression in the gastrointestinal tract between DT (susceptible phenotype) and EW (resistant phenotype) following dietary AFB1 challenge (320 ppb for 14 days); specifically in cecal tonsil which functions in both nutrient absorption and gut immunity. RNAseq and gene expression analysis revealed significant differential gene expression in AFB1-treated animals compared to control-fed domestic and wild birds and in within-treatment comparisons between bird types. Significantly upregulated expression of the primary hepatic AFB1-activating P450 (CYP1A5) as well as transcriptional changes in tight junction proteins were observed in AFB1-treated birds. Numerous pro-inflammatory cytokines, TGF-β and EGF were significantly down regulated by AFB1 treatment in DT birds and pathway analysis suggested suppression of enteroendocrine cells. Conversely, AFB1 treatment modified significantly fewer unique genes in EW birds; among these were genes involved in lipid synthesis and metabolism and immune response. This is the first investigation of the effects of AFB1 on the turkey gastro-intestinal tract. Results suggest that in addition to the hepatic transcriptome, animal resistance to this mycotoxin occurs in organ systems outside the liver, specifically as a refractory gastrointestinal tract.


2020 ◽  
Vol 17 (3) ◽  
pp. 191-199
Author(s):  
Seval Yilmaz ◽  
Fatih Mehmet Kandemir ◽  
Emre Kaya ◽  
Mustafa Ozkaraca

Objective: This study aimed to detect hepatic oxidative damage caused by aflatoxin B1 (AFB1), as well as to examine how propolis protects against hepatotoxic effects of AFB1. Method: Rats were split into four groups as control group, AFB1 group, propolis group, AFB1+ propolis group. Results: There was significant increase in malondialdehyde (MDA) level and tumor suppressor protein (TP53) gene expression, Glutathione (GSH) level, Catalase (CAT) activity, CAT gene expression decreased in AFB1 group in blood. MDA level and Glutathione-S-Transferase (GST) activity, GST and TP53 gene expressions increased in AFB1 group, whereas GSH level and CAT activity alongside CAT gene expression decreased in liver. AFB1+propolis group showed significant decrease in MDA level, GST activity, TP53 and GST gene expressions, GSH level and CAT activity and CAT gene expression increased in liver compared to AFB1 group. Conclusion: These results suggest that propolis may potentially be natural agent that prevents AFB1- induced oxidative stress and hepatotoxicity.


Toxins ◽  
2021 ◽  
Vol 13 (6) ◽  
pp. 385
Author(s):  
Alaa Baazeem ◽  
Alicia Rodriguez ◽  
Angel Medina ◽  
Naresh Magan

Pistachio nuts are an important economic tree nut crop which is used directly or processed for many food-related activities. They can become colonized by mycotoxigenic spoilage fungi, especially Aspergillus flavus, mainly resulting in contamination with aflatoxins (AFs), especially aflatoxin B1 (AFB1). The prevailing climate in which these crops are grown changes as temperature and atmospheric CO2 levels increase, and episodes of extreme wet/dry cycles occur due to human industrial activity. The objectives of this study were to evaluate the effect of interacting Climate Change (CC)-related abiotic factors of temperature (35 vs. 37 °C), CO2 (400 vs. 1000 ppm), and water stress (0.98–0.93 water activity, aw) on (a) growth (b) aflD and aflR biosynthetic gene expression and (c) AFB1 production by two strains A. flavus (AB3, AB10) in vitro on milled pistachio-based media and when colonizing layers of shelled raw pistachio nuts. The A. flavus strains were resilient in terms of growth on pistachio-based media and the colonisation of pistachio nuts with no significant difference when exposed to the interacting three-way climate-related abiotic factors. However, in vitro studies showed that AFB1 production was significantly stimulated (p < 0.05), especially when exposed to 1000 ppm CO2 at 0.98–0.95 aw and 35 °C, and sometimes in the 37 °C treatment group at 0.98 aw. The relative expression of the structural aflD gene involved in AFB1 biosynthesis was decreased or only slightly increased, relative to the control conditions at elevated CO, regardless of the aw level examined. For the regulatory aflR gene expression, there was a significant (p < 0.05) increase in 1000 ppm CO2 and 37 °C for both strains, especially at 0.95 aw. The in situ colonization of pistachio nuts resulted in a significant (p < 0.05) stimulation of AFB1 production at 35 °C and 1000 ppm CO2 for both strains, especially at 0.98 aw. At 37 °C, AFB1 production was either decreased, in strain AB3, or remained similar, as in strain AB10, when exposed to 1000 ppm CO2. This suggests that CC factors may have a differential effect, depending on the interacting conditions of temperature, exposure to CO2 and the level of water stress on AFB1 production.


2009 ◽  
Vol 51 (6) ◽  
pp. 1010-1020 ◽  
Author(s):  
Ana Pardo-Saganta ◽  
Maria Ujue Latasa ◽  
Josefa Castillo ◽  
Laura Alvarez-Asiain ◽  
María J. Perugorría ◽  
...  

1989 ◽  
Vol 170 (1) ◽  
pp. 349-354 ◽  
Author(s):  
D Bernuau ◽  
L Legrès ◽  
Y Lamri ◽  
N Giuily ◽  
G Fey ◽  
...  

Functional heterogeneity in the lobule with regard to plasma protein synthesis is still debated. Therefore, we have localized in liver sections from normal rats and from rats with turpentine-induced AIR the mRNA and protein products of three genes with different alterations in their hepatic expression during an AIR: alpha 2M and alpha 1PI, two positively reacting acute-phase genes, and alpha 1I3, a negative acute-phase reactant. In normal liver, all hepatocytes expressed alpha 2M and alpha 1I3 mRNA, but a preferential expression of alpha 2M and alpha 1I3 mRNA and protein in the PP and ML zones was observed. During an AIR, the level of alpha 2M mRNA increased fourfold in the cytoplasm of PP and ML hepatocytes, while the level of cytoplasmic alpha 1I3 mRNA was decreased about fourfold in the same zones, with parallel variations in the expression of the corresponding proteins. In contrast, no significant modulation of the RNA and protein concentrations of both genes was detected in PV areas. alpha 1PI mRNA was expressed at the same levels in the three lobular zones in normal liver, but staining for the alpha 1PI protein was more intense in the PV zones. During the acute-phase response alpha 1PI mRNA levels were increased twofold in all three lobular zones, and alpha 1PI staining became homogeneous within the lobule. These results demonstrate that the location of a hepatocyte with the liver lobule can influence the expression of the three genes under study both at pre- and post-translational levels, in basal conditions, as well as during modulation of their expression during the inflammatory reaction.


Sign in / Sign up

Export Citation Format

Share Document