scholarly journals Occurrence of Alternaria and Other Toxins in Cereal Grains Intended for Animal Feeding Collected in Slovenia: A Three-Year Study

Toxins ◽  
2021 ◽  
Vol 13 (5) ◽  
pp. 304
Author(s):  
Janja Babič ◽  
Gabrijela Tavčar-Kalcher ◽  
Franci Aco Celar ◽  
Katarina Kos ◽  
Tanja Knific ◽  
...  

In recent years, the less-studied Alternaria mycotoxins have attracted increasing interest due to the lack of survey data and their ability to cause toxic effects in animals and humans. To fill the gap, the aim of this three-year survey was to investigate the presence and co-occurrence of Alternaria and other mycotoxins in a total of 433 cereal grain samples from Slovenian farms and agricultural cooperatives from 2014 to 2016. Using the multi-mycotoxin method, 14 mycotoxins were determined. In 53% of 433 analysed samples, contamination with at least one mycotoxin was found. Deoxynivalenol (DON) and tenuazonic acid (TeA) were present in 32% and 26% of cereal grain samples, respectively, whereas alternariol (AOH), tentoxin (TEN), alternariol monomethyl ether (AME), 3- and 15-acetyldeoxynivalenol (3- and 15-AcDON), and zearalenone (ZEN) were present in fewer than 15% of the samples. Ochratoxin A (OTA) was found in one rye sample, while diacetoxyscirpenol (DAS), HT-2 and T-2 toxin, and fumonisins B1 and B2 (FB1 and FB2) were not detected. The highest maximum and median concentrations of Alternaria toxins were determined in spelt in 2016 (TeA, 2277 µg/kg and 203 µg/kg, respectively), and those of Fusarium toxins in wheat in 2015 (DON, 4082 µg/kg and 387 µg/kg, respectively). The co-occurrence of two or more mycotoxins was found in 43% of the positive samples. The correlations between Alternaria toxins were very weak but statistically significant (r: 0.15–0.17, p: 0.0042–0.0165). A well-known correlation between Fusarium toxins DON and ZEN was weak and highly significant (r = 0.28, p < 0.0001).

1995 ◽  
Vol 58 (10) ◽  
pp. 1133-1134 ◽  
Author(s):  
SOFÍA N. CHULZE ◽  
ADRIANA M. TORRES ◽  
ANA M. DALCERO ◽  
MIRIAM G. ETCHEVERRY ◽  
MARÍA L. RAMÍREZ ◽  
...  

A survey of 150 sunflower-seed samples was carried out to evaluate the contamination from infection with Alternaria alternata with alternariol (AOH), alternariol monomethyl ether (AME) and tenuazonic acid (TA). A high percentage of the samples was contaminated with AOH (85%), AME, (47%), and TA (65%). The average levels detected were 187 μg/kg for AOH, 194 μg/kg for AME, and 6,692, μg/kg for TA. When sunflower seeds fermented by Alternaria alternata were processed under laboratory conditions to obtain the oil and meal, different distributions of Alternaria toxins between the oil and the meal were observed: whereas AOH, AME, and TA were detected in the meal, only AME and TA were detected in the oil, and the latter in a low percentage.


2008 ◽  
Vol 1 (2) ◽  
pp. 175-188 ◽  
Author(s):  
V. Ostry

Microfungi of the genus Alternaria are ubiquitous pathogens and saprophytes. Many species of the genus Alternaria commonly cause spoilage of various food crops in the field or post-harvest decay. Due to their growth even at low temperatures, they are also responsible for spoilage of these commodities during refrigerated transport and storage. Several Alternaria species are known producers of toxic secondary metabolites - Alternaria mycotoxins. A. alternata produces a number of mycotoxins, including alternariol, alternariol monomethyl ether, altenuene, altertoxins I, II, III, tenuazonic acid and other less toxic metabolites. Tenuazonic acid is toxic to several animal species, e.g. mice, chicken, dogs. Alternariol, alternariol monomethyl ether, altenuene and altertoxin I are not very acutely toxic. There are several reports on the mutagenicity and genotoxicity of alternariol, and alternariol monomethyl ether. Alternariol has been identified as a topoisomerase I and II poison which might contribute to the impairment of DNA integrity in human colon carcinoma cells. Analytical methods to determine Alternaria toxins are largely based on procedures, involving cleanup by solvent partitioning or solid phase extraction, followed by chromatographic separation techniques, in combination with ultraviolet, fluorescence, electrochemical and mass spectroscopic detection. A large number of Alternaria metabolites has been reported to occur naturally in food commodities (e.g. fruit, vegetables, cereals and oil plants). Alternariol, alternariol monomethyl ether and tenuazonic acid were frequently detected in apples, apple products, mandarins, olives, pepper, red pepper, tomatoes, tomato products, oilseed rape meal, sunflower seeds, sorghum, wheat and edible oils. Alternariol and alternariol monomethyl ether were detected in citrus fruit, Japanese pears, prune nectar, raspberries, red currant, carrots, barley and oats. Alternariol monomethyl ether and tenuazonic acid were detected in melon. Natural occurrence of alternariol has been reported in apple juice, cranberry juice, grape juice, prune nectar, raspberry juice, red wine and lentils.


2021 ◽  
Vol 104 (3) ◽  
pp. 153-162
Author(s):  
Alexandra Stanislavovna Orina* ◽  
Olga Pavlovna Gavrilova ◽  
Tatyana Yuryevna Gagkaeva ◽  
Nadezhda Nikolayevna Gogina

The ubiquitous occurrence of Alternaria fungi belonging to sections Alternaria and Infectoriae was confirmed using real-time PCR in wheat, barley and oat grain grown in West Siberia in 2018‒2019. The DNA amount of Alternaria section Alternaria fungi varied from 53×10-4 to 21731×10-4 pg/ng and on average exceeded the DNA amount of Alternaria section Infectoriae fungi by 4.5‒14.6 times, depending on the crop and harvest year.The average DNA amount of Alternaria fungi belonging to both sections in the oat grain was lower than in wheat and barley grain. The grain samples from Altay region were the most infected with Alternaria fungi. The alternariol (AOH), alternariol monomethyl ether (AME), tentoxin (TEN), and tenuazonic acid (TeA) mycotoxins produced by Alternaria fungi were detected by HPLC-MS/MS in 23 %, 6 %, 85 %, and 83 % of analyzed grain samples, respectively. The majority (61 %) of the samples contained two Alternaria mycotoxins in the grain (mainly TEN and TeA), 19 % of the samples three mycotoxins, and only one sample all four together. In the most of samples the content of Alternaria mycotoxins did not exceed 100 μg/kg, and only TeA content was higher (from 113 to 14963 μg/kg) than others. The significant differences in grain crops by the Alternaria mycotoxins content were revealed: more amounts of AOH, AME, and less amount of TEN were found in oat grain then in barley grain. A high positive significant correlation between the DNA amount of Alternaria section Alternaria fungi and TeA was established that indicates the role of these fungi as the main producers of TeA in the grain.


2008 ◽  
Vol 71 (6) ◽  
pp. 1262-1265 ◽  
Author(s):  
M. P. AZCARATE ◽  
A. PATRIARCA ◽  
L. TERMINIELLO ◽  
V. FERNÁNDEZ PINTO

The natural occurrence of Alternaria mycotoxins in Argentinean wheat from the zone 5 South during the 2004 to 2005 harvest was investigated in 64 wheat samples. All samples were highly contaminated with a wide range of fungal species. Alternaria was found as the main component of the mycota, with an infection percentage of 100%. Three mycotoxins produced by species of Alternaria were determined in wheat: alternariol, alternariol monomethyl ether, and tenuazonic acid. Alternariol was detected in 4 (6%) of 64 samples, with a range of 645 to 1,388 μg/kg (mean of 1,054 μg/kg); alternariol monomethyl ether, with a range of 566 to 7,451 μg/kg (mean of 2,118 μg/kg) in 15 (23%) of 64 samples; and tenuazonic acid in 12 (19%) of 64 samples, with a range of 1,001 to 8,814 μg/kg (mean, 2,313 μg/kg). Alternariol monomethyl ether was the predominant toxin, but tenuazonic acid was detected in higher concentrations. Alternariol was present in fewer samples and in lower levels than were the other toxins. Tenuazonic acid and alternariol monomethyl ether occurred together in four samples, while tenuazonic acid and alternariol co-occurred in one sample. This the first report of the natural occurrence of Alternaria mycotoxins in Argentinean wheat. Toxin levels were high, probably due to the heavy infection with Alternaria species found in the samples.


Toxins ◽  
2018 ◽  
Vol 10 (10) ◽  
pp. 382 ◽  
Author(s):  
Cheng Wang ◽  
Yingying Fan ◽  
Weizhong He ◽  
Dongqiang Hu ◽  
Aibo Wu ◽  
...  

A simple, rapid and efficient methodology was developed and validated for the analysis of four Alternaria toxins in jujube: Tenuazonic acid, alternariol, alternariol monomethyl ether, and tentoxin. Under the optimized extraction procedure, chromatographic conditions, and instrumental parameters, the four toxins were effectively extracted via a quick, easy, cheap, effective, rugged, and safe (QuEChERS) method, and quantified by ultra-performance liquid chromatography coupled to tandem mass spectrometry (UPLC-MS/MS). Matrix-matched calibrations ranging from 0.01 to 0.5 μg mL−1 were conducted for the quantification due to the matrix effect. A blank jujube sample was spiked at 40, 80 and 160 μg kg−1, obtaining recoveries in the range of 83.5–109.6%. Limits of detection and limits of quantification were in the range of 0.14–0.26 and 0.47–0.87 μg kg−1, respectively. Finally, the developed method was applied for the quantification of the four toxins in 14 jujube samples, including black spot-infected and uninfected samples. Results showed that the predominant toxin detected in all the samples was tenuazonic acid, the content of which was associated with the infection level; alternariol, alternariol monomethyl ether, and tentoxin were detected in all the infected samples and some of the uninfected samples with rather low contents.


2020 ◽  
Vol 8 (2) ◽  
pp. 303
Author(s):  
Elizabet Janić Hajnal ◽  
Lato Pezo ◽  
Dejan Orčić ◽  
Ljubiša Šarić ◽  
Dragana Plavšić ◽  
...  

The aim of this study was to investigate the fate of the most common Alternaria toxins found in wheat—tenuazonic acid (TeA), alternariol (AOH), and alternariol monomethyl ether (AME) during sourdough processing. For this purpose, spiked whole wheat flour, 3% sourdough starter, 0.5% of baker’s yeast, and 105% of water calculated on flour weight as a base were used as raw materials. Spiked whole wheat dough was fermented for 4 h, 8 h, 12 h, 24 h, and 48 h at 25 °C, and at each point the fermented dough samples were taken, frozen, lyophilized, grounded, and stored until further analysis. To study the effect of sourdough processing on TeA, AOH and AME content, the validated method of high-performance liquid chromatography coupled to tandem mass spectrometry (LC-MS/MS) for these mycotoxins was used. Mathematical models of Alternaria toxins reduction were developed in the form of Four Parameter Logistic Regression function. The maximum reduction of TeA, AOH, and AME levels was archived at 48 h of dough fermentation at 25 °C compared with dough after kneading (0 h). Under these conditions, a reduction of the toxin levels of 60.3 %, 41.5%, and 24.1% was observed for TeA, AOH, and AME, respectively.


2009 ◽  
Vol 2 (2) ◽  
pp. 129-140 ◽  
Author(s):  
A. Logrieco ◽  
A. Moretti ◽  
M. Solfrizzo

The genus Alternaria includes both plant-pathogenic and saprophytic species, which may affect crops in the field or cause harvest and postharvest decay of plant products. The taxonomy of the genus Alternaria is not well-defined yet. A polyphasic approach based on morphological features, phylogeny and toxin profiles could be the key to a correct identification at species level and the evaluation of mycotoxin risks associated with fungal contamination. Species of Alternaria are known to produce many metabolites, mostly phytotoxins, which play an important role in the pathogenesis of plants. However, certain species, in particular the most common one A. alternata, are capable of producing several mycotoxins in infected plants and/or in agricultural commodities. The major Alternaria mycotoxins belong to three structural classes: the tetramic acid derivative, tenuazonic acid; the dibenzopyrone derivatives, alternariol, alternariol monomethyl ether and altenuene; and the perylene derivatives, the altertoxins. The toxic effects of the Alternaria toxins have not yet received the same attention as the biological activities of other mycotoxins. However, the Alternaria mycotoxins should not be underestimated since they are produced by several Alternaria species frequently associated with a wide range of diseases in many plants of a high agrifood value. The major problems associated with Alternaria mycotoxin contamination of agricultural products are illustrated by focusing on various crops and their relevant diseases, e.g. black rot of tomato, olive, and carrots; black and grey rot of citrus fruits; black point of small-grain cereals; and Alternaria diseases of apples.


2001 ◽  
Vol 84 (6) ◽  
pp. 1809-1817 ◽  
Author(s):  
Peter M Scott

Abstract Fungi of the genus Alternaria are parasitic on plants and other organic materials. A. alternata is a frequently occurring species of particular interest because it produces a number of mycotoxins, including alternariol (AOH), alternariol monomethyl ether (AME), altenuene (ALT), altertoxins I, II, and III (ATX-I, -II, and -III), and L-tenuazonic acid (TeA). Cleanup procedures of analytical methods for foods and foodstuffs include solvent partition, generally used for TeA, and solid-phase extraction columns for AOH, AME, and ATX-I. These Alternaria mycotoxins have been determined by TLC, GC, and more usually LC, mainly with ultraviolet detection, although fluorescence and electrochemical detection have also been used for Alternaria toxins other than TeA. A Zn2+ salt is usually added to the LC mobile phase for TeA. Recently, atmospheric pressure chemical ionization and electrospray LC/MS and LC–MS/MS have been applied to the determination and confirmation of AOH and AME in apple juice and other fruit beverages at sub ng/mL levels. Natural occurrences of AOH, AME, and in some cases other Alternaria toxins have been reported in various fruits, including tomatoes, olives, mandarins, melons, peppers, apples, and raspberries. They have been found also in processed fruit products such as apple juice, other fruit beverages and tomato products, wheat and other grains, sunflower seeds, oilseed rape meal, and pecans.


2019 ◽  
Vol 12 (1) ◽  
pp. 89-99 ◽  
Author(s):  
D. Topi ◽  
G. Tavčar-Kalcher ◽  
K. Pavšič-Vrtač ◽  
J. Babič ◽  
B. Jakovac-Strajn

The presence of four Alternaria toxins in maize and wheat harvested in 2014 and 2015 in Albania was investigated. In total, 45 samples of maize and 71 samples of wheat were collected from the country’s main producing regions. The presence of alternariol (AOH), alternariol monomethyl ether (AME), tenuazonic acid (TeA) and tentoxin (TTX) was studied by an LC-MS/MS method. The incidence of Alternaria toxins in maize was 45.2% in the year 2014 and 7.1% in 2015, and the contamination rate in wheat was 82.9% in 2014 and 86.1% in 2015. Considering maize and wheat samples together, 65.2 and 64.0% of samples were contaminated by Alternaria toxins in the harvesting years 2014 and 2015, respectively. The occurrence rate was much higher in wheat than in maize, but the concentrations were higher in maize. The highest concentration of total Alternaria toxins in maize was 1,283 μg/kg (mean 243.0 μg/kg, median 110.2 μg/kg), while the maximum concentration in wheat was 175.7 μg/kg (mean 29.9 μg/kg, median 16.5 μg/kg). TeA was the major Alternaria mycotoxin detected. It was found in 70 out of 116 samples (60.3%). Chronic exposure of the adult population in Albania to Alternaria toxins through cereal consumption was assessed by the estimated daily intake (EDI) taking into account daily consumption of wheat and maize of 380 and 4.9 g, respectively. The main contribution to chronic dietary exposure was by TeA originating from wheat, with EDIs of 88.6-94.1 ng/kg body weight (bw) per day in 2014 and 152.7-155.5 ng/kg bw per day in 2015. TTX EDIs were 7.8- 34.0 and 10.6-38.7 ng/kg bw per day in 2014 and 2015, respectively. The contribution of AOH and AME originating from wheat was 0-31.7 ng/kg bw per day. The contribution of Alternaria toxins through maize consumption was significantly lower.


Author(s):  
Sophie Scheibenzuber ◽  
Fabian Dick ◽  
Stefan Asam ◽  
Michael Rychlik

AbstractA multi-mycotoxin LC-MS/MS method was developed to quantify 13 free and modified Alternaria toxins in different beer types by applying a combination of stable-isotope dilution assays (SIDAs) and matrix-matched calibration. With limits of detection (LODs) between 0.03 µg/L (alternariol monomethyl ether, AME) and 5.48 µg/L (altenuene, ALT), limits of quantitation (LOQs) between 0.09 µg/L (AME) and 16.24 µg/L (ALT), and recoveries between 72 and 113%, we obtained a sensitive and reliable method, which also covers the emerging toxins alternariol-3-glucoside (AOH-3-G), alternariol-9-glucoside (AOH-9-G), alternariol monomethyl ether-3-glucoside (AME-3-G) and alternariol-3-sulfate (AOH-3-S) and alternariol monomethylether-3-sulfate (AME-3-S). Furthermore, 50 different beer samples were analyzed, showing no contamination with Alternaria toxins apart from tenuazonic acid (TeA) in concentrations between 0.69 µg/L and 16.5 µg/L. According to this study, the exposure towards TeA through beer consumption can be considered as relatively low, as the threshold of toxicological concern (TTC) value of 1500 ng/kg body weight per day might not be reached when consuming reasonable amounts of beer.


Sign in / Sign up

Export Citation Format

Share Document