scholarly journals Maize/Soybean Relay Strip Intercropping Reduces the Occurrence of Fusarium Root Rot and Changes the Diversity of the Pathogenic Fusarium Species

Pathogens ◽  
2020 ◽  
Vol 9 (3) ◽  
pp. 211
Author(s):  
Xiaoli Chang ◽  
Li Yan ◽  
Muhammd Naeem ◽  
Muhammad Ibrahim Khaskheli ◽  
Hao Zhang ◽  
...  

Fusarium species are the most detrimental pathogens of soybean root rot worldwide, causing large loss in soybean production. Maize/soybean relay strip intercropping has significant advantages on the increase of crop yields and efficient use of agricultural resources, but its effects on the occurrence and pathogen population of soybean root rot are rarely known. In this study, root rot was investigated in the fields of the continuous maize/soybean strip relay intercropping and soybean monoculture. Fusarium species were isolated from diseased soybean roots and identified based on sequence analysis of translation elongation factor 1α (EF-1α) and RNA polymerase II second largest subunit (RPB2), and the diversity and pathogenicity of these species were also analyzed. Our results showed that intercropping significantly decreased soybean root rot over monoculture. A more diverse Fusarium population including Fusarium solani species complex (FSSC), F. incarnatum-equiseti species complex (FIESC), F. oxysporum, F. fujikuroi, F. proliferatum and F. verticillioides, F. graminearum and F. asiaticum was identified from intercropping while FSSC, FIESC, F. oxysporum, F. commune, F. asiaticum and F. meridionale were found from monoculture. All Fusarium species caused soybean root infection but exhibited distinct aggressiveness. The most aggressive F. oxysporum was more frequently isolated in monoculture than intercropping. FSSC and FIESC were the dominant species complex and differed in their aggressiveness. Additionally, F. fujikuroi, F. proliferatum and F. verticillioides were specifically identified from intercropping with weak or middle aggressiveness. Except for F. graminearum, F. meridionale and F. asiaticum were firstly reported to cause soybean root rot in China. This study indicates maize/soybean relay strip intercropping can reduce soybean root rot, change the diversity and aggressiveness of Fusarium species, which provides an important reference for effective management of this disease.


Diversity ◽  
2021 ◽  
Vol 13 (10) ◽  
pp. 472
Author(s):  
Marcele Vermeulen ◽  
Lisa A. Rothmann ◽  
Wijnand J. Swart ◽  
Marieka Gryzenhout

Trials are currently being conducted in South Africa to establish Amaranthus cruentus as a new pseudocereal crop. During recent surveys, Fusarium species were associated with weevil damage in A. cruentus fields. Preliminary studies showed that some of these Fusarium species grouped into two distinct clades within the F. fujikuroi species complex. The aim of this study was to characterize these isolates based on the morphology and phylogeny of the translation elongation factor 1α (TEF1α) gene region, ß-tubulin 2 (ßT) gene region and RNA polymerase II subunit (RPB2), and to determine if these isolates are pathogenic to A. cruentus. Phylogenetic and morphological studies showed that these two clades represent two novel species described here as F. casha and F. curculicola. Both species were shown to have the potential to be pathogenic to A. cruentus during routine greenhouse inoculation tests. While isolations indicate a possible association between these two species and weevils, further research is needed to understand this association and the role of weevils in disease development involving F. casha and F. curculicola in A. cruentus.



Plant Disease ◽  
2020 ◽  
Author(s):  
Swarnalatha Moparthi ◽  
Mary Eileen Burrows ◽  
Josephine Mgbechi-Ezeri ◽  
Bright Agindotan

Root rot caused by Fusarium species is a major problem in the pulse growing regions of Montana. Fusarium isolates (n=112) were obtained from seeds and/or roots of chickpea, dry pea, and lentil. Isolates were identified by comparing the sequences of the internal transcribed spacer region and the translation elongation factor 1-α in Fusarium-ID database. Fusarium avenaceum was the most abundant species (28%), followed by F. acuminatum (21%), F. poae (13%), F. oxysporum (8%), F. culmorum (6%), F. redolens (6%), F. sporotrichioides (6%), F. solani (4%), F. graminearum (2%), F. torulosum (2%) and F. tricinctum (0.9%). The aggressiveness of a subset of 50 isolates that represent various sources of isolation was tested on three pulse crops and two cereal crops. Nonparametric analysis of variance conducted on ranks of disease severity indicated that F. avenaceum and F. solani isolates were highly aggressive on pea and chickpea. In lentil, F. avenaceum and F. culmorum were highly aggressive. In barley, F. avenaceum, F. solani, F. culmorum, and F. graminearum were highly aggressive. In wheat, F. avenaceum, F. graminearum, and F. culmorum were highly aggressive. Two F. avenaceum isolates were highly aggressive across all the crops tested and found to be cross pathogenic. One isolate of F. culmorum and an isolate of F. graminearum obtained from chickpea and lentil seed were highly aggressive on barley and wheat. The results indicate that multiple Fusarium spp. from seeds and roots can cause root rot on both pulse and cereal crops. Rotating these crops may still lead to an increase in inoculum levels, making crop rotation limited in efficacy as a disease management strategy.



Author(s):  
N. Yilmaz ◽  
M. Sandoval-Denis ◽  
L. Lombard ◽  
C.M. Visagie ◽  
B.D. Wingfield ◽  
...  

The Fusarium fujikuroi species complex (FFSC) includes more than 60 phylogenetic species (phylospecies) with both phytopathological and clinical importance. Because of their economical relevance, a stable taxonomy and nomenclature is crucial for species in the FFSC. To attain this goal, we examined type specimens and representative cultures of several species by employing morphology and phylogenetic analyses based on partial gene fragments of the translation elongation factor 1-alpha (tef1), beta-tubulin (tub2), calmodulin (cmdA), RNA polymerase largest subunit (rpb1) and RNA polymerase II second largest subunit (rpb2). Based on these results three new species were delimited in the FFSC. Two of these phylospecies clustered within the African clade, and one in the American clade. Epitypes were also designated for six previously described FFSC species including F. proliferatum and F. verticillioides, and a neotype designated for F. subglutinans. Furthermore, both F. acutatum and F. ophioides, which were previously invalidly published, are validated.



2019 ◽  
Vol 109 (3) ◽  
pp. 456-468 ◽  
Author(s):  
I. Leal ◽  
M.-J. Bergeron ◽  
N. Feau ◽  
C. K. M. Tsui ◽  
B. Foord ◽  
...  

Coniferiporia sulphurascens is a facultative fungal pathogen that causes laminated root rot (LRR) in commercially important coniferous species worldwide. This fungus spreads primarily by way of vegetative mycelium transferring at points of contact between infected and healthy roots. Successful intervention to control LRR requires a better understanding of the population structure and genetic variability of C. sulphurascens. In this study, we investigated the population genetic structure and origin of C. sulphurascens populations in western North America and eastern Eurasia collected from multiple coniferous hosts. By analyzing the small and large mitochondrial ribosomal RNA subunit genes combined with six nuclear loci (internal transcribed spacer region, actin, RNA polymerase II largest subunit, RNA polymerase II second-largest subunit, laccase-like multicopper oxidase, and translation elongation factor 1-α), we observed that none of the alleles among the loci were shared between North American (NA) and Eurasian C. sulphurascens populations. In total, 55 multilocus genotypes (MLGs) were retrieved in C. sulphurascens isolates occurring in these two continental regions. Of these, 41 MLGs were observed among 58 isolates collected from widespread locations in British Columbia (Canada) and the northwestern United States, while 14 MLGs were observed among 16 isolates sampled in Siberia and Japan. Our data showed that the levels of genetic differentiation between the NA and Eurasian populations are much greater than the populations from within each continental region; the two continental populations formed clearly divergent phylogenetic clades or lineages since they were separated approximately 7.5 million years ago. Moreover, the Eurasian population could be the source of the NA population. Our study indicates the existence of cryptic diversity in this pathogen species, and strongly suggests that the NA and Eurasian populations represent two lineages, which have progressively diverged from each other in allopatry.



Toxins ◽  
2021 ◽  
Vol 13 (7) ◽  
pp. 463
Author(s):  
Amal Rabaaoui ◽  
Chiara Dall’Asta ◽  
Laura Righetti ◽  
Antonia Susca ◽  
Antonio Logrieco ◽  
...  

In 2017–2018, extensive symptoms of sudden decline and fruit rot were observed on date palms in southern Tunisia. Samples of diseased plants were randomly collected in six localities. Based on morphological identification, Fusarium was the most frequent fungal genus detected. A sequencing of translation elongation factor, calmodulin, and second largest subunit of RNA polymerase II genes was used to identify 63 representative Fusarium strains at species level and investigate their phylogenetic relationships. The main species detected was Fusarium proliferatum, and at a much lesser extent, Fusarium brachygibbosum, Fusarium caatingaense, Fusarium clavum, Fusarium incarnatum, and Fusarium solani. Pathogenicity on the Deglet Nour variety plantlets and the capability to produce mycotoxins were also assessed. All Fusarium species were pathogenic complying Koch’s postulates. Fusarium proliferatum strains produced mainly fumonisins (FBs), beauvericin (BEA), and, to a lesser extent, enniatins (ENNs) and moniliformin (MON). All F. brachygibbosum strains produced low levels of BEA, diacetoxyscirpenol, and neosolaniol; two strains produced also T-2 toxin, and a single strain produced HT-2 toxin. Fusarium caatingaense, F. clavum, F. incarnatum produced only BEA. Fusarium solani strains produced MON, BEA, and ENNs. This work reports for the first time a comprehensive multidisciplinary study of Fusarium species on date palms, concerning both phytopathological and food safety issues.



Plant Disease ◽  
2022 ◽  
Author(s):  
Liu Yang ◽  
Tian Yuan ◽  
Xia Zhao ◽  
Yue Liang ◽  
UWAREMWE CONSTANTINE ◽  
...  

Root rot is a serious disease in plantations of A. sinensis, severely affecting yield and quality and threatening sustainable production. Fusarium isolates (n=32) were obtained from field samples of root rot tissue, leaves and infected soil. Isolates were identified by comparing the sequences of their internal transcribed spacer (ITS) region and translation elongation factor 1-ɑ (TEF-1ɑ) to sequences of known species in the NCBI-database. These Fusarium isolates include F. tricinctum (43.75%), F. equiseti (31.25%), F. solani (9.37%), F. oxysporum (6.25%), F. acuminatum (6.25%), and F. incarnatum (3.12%). For pathogenicity testing under greenhouse conditions, seven isolates were selected based on a phylogenetic analysis, including four strains of F. tricinctum and one strain each of F. solani, F. oxysporum, and F. acuminatum. The seven isolates were all pathogenic but differed in their ability to infect: the four F. tricinctum strains were capable pathogens causing root rot in A. sinensis at 100% incidence and the highly aggressive. Furthermore, the symptoms of root rot induced by those seven isolates were consistent with typical root rot cases in the field, but their disease severity varied. Observed histopathological preparations of F. tricinctum-infected seedlings and tissue-slides results showed this fungal species can penetrate epidermal cells and colonize the cortical cells where it induces necrosis and severe plasmolysis. Plate confrontation experiments showed that isolated rhizosphere bacteria inhibited the Fusarium pathogens that cause root rot in A. sinensis. Our results provide timely information for informing the use of biocontrol agents for suppression of root rot disease.



Phytotaxa ◽  
2018 ◽  
Vol 356 (1) ◽  
pp. 91 ◽  
Author(s):  
LIN ZHU ◽  
XING JI ◽  
JING SI ◽  
BAO-KAI CUI

Phellinus vietnamensis sp. nov. is described from Vietnam based on morphological characters and molecular data. Morphologically, it is characterized by perennial, pileate basidiomata, a dimitic hyphal system, hooked hymenial setae, and colorless, broadly subglobose to ovoid, thick-walled basidiospores 5.5–6 × 4.8–5.2 μm. Phylogenetically, the status of Phellinus vietnamensis is strongly supported based on sequences of the nuclear internal transcribed spacer (ITS) regions, the translation elongation factor 1-α gene (EF1-α) nuclear large subunit rDNA (nrLSU) and the second largest subunits of RNA polymerase II (RPB2).



Toxins ◽  
2019 ◽  
Vol 11 (5) ◽  
pp. 297 ◽  
Author(s):  
Maryam Fallahi ◽  
Hossein Saremi ◽  
Mohammad Javan-Nikkhah ◽  
Stefania Somma ◽  
Miriam Haidukowski ◽  
...  

Fusarium species are among the most important fungal pathogens of maize, where they cause severe reduction of yield and accumulation of a wide range of harmful mycotoxins in the kernels. In order to identify the Fusarium species and their mycotoxin profiles associated to maize ear rot and kernel contamination in Iran, a wide sampling was carried out from field in ten major maize-producing provinces in Iran, during 2015 and 2016. From 182 samples of maize kernels, 551 strains were isolated and identified as belonging to Fusarium genus. Among the 234 representative strains identified at species level by translation elongation factor (EF-1α) sequences, the main Fusarium species were F. verticillioides and F. proliferatum, together representing 90% of the Iranian Fusarium population, and, to a lesser extent, F. incarnatum equiseti species complex (FIESC), F. thapsinum and F. redolens. Fumonisin (FBs) production by F. verticillioides and F. proliferatum representative strains was analysed, showing that all strains produced FB1. None of F. verticillioides strains produced FB2 nor FB3, while both FB2 and FB3 were produced only by F. proliferatum. Total mean of FBs production by F. verticillioides was higher than F. proliferatum. The occurrence of different Fusarium species on Iranian maize is reason of great concern because of the toxigenic risk associated to these species. Moreover, the diversity of the species identified increases the toxigenic risk associated to Fusarium contaminated maize kernels, because of the high possibility that a multi-toxin contamination can occur with harmful consequences on human and animal health.



2020 ◽  
Vol 44 (1) ◽  
pp. 206-239 ◽  
Author(s):  
Y.-F. Sun ◽  
D.H. Costa-Rezende ◽  
J.-H. Xing ◽  
J.-L. Zhou ◽  
B. Zhang ◽  
...  

Amauroderma s.lat. has been defined mainly by the morphological features of non-truncate and double-walled basidiospores with a distinctly ornamented endospore wall. In this work, taxonomic and phylogenetic studies on species of Amauroderma s.lat. are carried out by morphological examination together with ultrastructural observations, and molecular phylogenetic analyses of multiple loci including the internal transcribed spacer regions (ITS), the large subunit of nuclear ribosomal RNA gene (nLSU), the largest subunit of RNA polymerase II (RPB1) and the second largest subunit of RNA polymerase II (RPB2), the translation elongation factor 1-α gene (TEF) and the β-tubulin gene (TUB). The results demonstrate that species of Ganodermataceae formed ten clades. Species previously placed in Amauroderma s.lat. are divided into four clades: Amauroderma s.str., Foraminispora, Furtadoa and a new genus Sanguinoderma. The classification of Amauroderma s. lat. is thus revised, six new species are described and illustrated, and eight new combinations are proposed. SEM micrographs of basidiospores of Foraminispora and Sanguinoderma are provided, and the importance of SEM in delimitation of taxa in this study is briefly discussed. Keys to species of Amauroderma s.str., Foraminispora, Furtadoa, and Sanguinoderma are also provided.



Phytotaxa ◽  
2015 ◽  
Vol 222 (2) ◽  
pp. 129 ◽  
Author(s):  
Nian-Kai Zeng ◽  
MING ZHANG ◽  
ZHI-QUN Liang

Two lineages of Aureoboletus (Boletales, Boletaceae) from southern China were revealed by using molecular data based on combined dataset of the nuclear ribosomal large subunit RNA (nrLSU), the translation elongation factor apha-1 (tef1-a) and the largest subunit of RNA polymerase II (rpb1). One of them corresponds with the previous morphology-based taxon, viz. Boletellus longicollis, another one is different from those taxa described based on morphological features. And, thus, Auroboletus clavatus sp. nov. and A. longicollis comb. nov. were proposed. A detailed description, colour photos of fresh basidiomata, and a line-drawing of microscopic features of the two taxa were provided.



Sign in / Sign up

Export Citation Format

Share Document