scholarly journals Vertical Infestation Profile of Aedes in Selected Urban High-Rise Residences in Malaysia

2020 ◽  
Vol 5 (3) ◽  
pp. 114 ◽  
Author(s):  
Nurulhusna Ab Hamid ◽  
Siti Nurfadhlina Mohd Noor ◽  
Nur Rasyidah Isa ◽  
Rohaiyu Md Rodzay ◽  
Ainaa Mardia Bachtiar Effendi ◽  
...  

Dengue is placing huge burdens on the Malaysian healthcare system as well as the economy. With the expansion in the number of high-rise residential buildings, particularly in the urban centers, the flight range and behavior of Aedes mosquitoes may be altered in this habitat type. In this study, we aimed to expand the understanding of the vertical distribution and dispersal of Aedes in nine selected high-rise residences in Kuala Lumpur, Selangor, and Johor using ovitraps as the sampling method. We discovered that Ae. aegypti is the predominant species in all study sites. Both Ae. aegypti and Ae. albopictus are most abundant within the first three levels and could be found up to level 21 (approximately 61.1–63.0 m). Pearson correlation analyses exhibited negative correlations in eight out of nine study sites between the ovitrap indexes (OIs) within each floor level, suggesting that Aedes density decreased as the building level increased. Our findings provide information to the public health authorities on ‘hot spot’ floors for effective suppression of dengue transmission.

2020 ◽  
Author(s):  
Ahmad Sedaghat ◽  
Seyed Amir Abbas Oloomi ◽  
Mahdi Ashtian Malayer ◽  
Nima Rezaei ◽  
Amir Mosavi

AbstractOn 30 July 2020, a total number of 301,530 diagnosed COVID-19 cases were reported in Iran, with 261,200 recovered and 16,569 dead. The COVID-19 pandemic started with 2 patients in Qom city in Iran on 20 February 2020. Accurate prediction of the end of the COVID-19 pandemic and the total number of populations affected is challenging. In this study, several widely used models, including Richards, Gompertz, Logistic, Ratkowsky, and SIRD models, are used to project dynamics of the COVID-19 pandemic in the future of Iran by fitting the present and the past clinical data. Iran is the only country facing a second wave of COVID-19 infections, which makes its data difficult to analyze. The present study’s main contribution is to forecast the near-future of COVID-19 trends to allow non-pharmacological interventions (NPI) by public health authorities and/or government policymakers. We have divided the COVID-19 pandemic in Iran into two waves, Wave I, from February 20, 2020 to May 4, 2020, and Wave II from May 5, 2020, to the present. Two statistical methods, i.e., Pearson correlation coefficient (R) and the coefficient of determination (R2), are used to assess the accuracy of studied models. Results for Wave I Logistic, Ratkowsky, and SIRD models have correctly fitted COVID-19 data in Iran. SIRD model has fitted the first peak of infection very closely on April 6, 2020, with 34,447 cases (The actual peak day was April 7, 2020, with 30,387 active infected patients) with the re-production number R0=3.95. Results of Wave II indicate that the SIRD model has precisely fitted with the second peak of infection, which was on June 20, 2020, with 19,088 active infected cases compared with the actual peak day on June 21, 2020, with 17,644 cases. In Wave II, the re-production number R0=1.45 is reduced, indicating a lower transmission rate. We aimed to provide even a rough project future trends of COVID-19 in Iran for NPI decisions. Between 180,000 to 250,000 infected cases and a death toll of between 6,000 to 65,000 cases are expected in Wave II of COVID-19 in Iran. There is currently no analytical method to project more waves of COVID-19 beyond Wave II.


2020 ◽  
Author(s):  
Ahmad Sedaghat ◽  
Seyed Amir Abbas Oloomi ◽  
Ashtian Malayer ◽  
Nima Rezaei ◽  
Amir Mosavi

On 30 July 2020, a total number of 301,530 diagnosed COVID-19 cases were reported in Iran, with 261,200 recovered and 16,569 dead. The COVID-19 pandemic started with 2 patients in Qom city in Iran on 20 February 2020. Accurate prediction of the end of the COVID-19 pandemic and the total number of populations affected is challenging. In this study, several widely used models, including Richards, Gompertz, Logistic, Ratkowsky, and SIRD models, are used to project dynamics of the COVID-19 pandemic in the future of Iran by fitting the present and the past clinical data. Iran is the only country facing a second wave of COVID-19 infections, which makes its data difficult to analyze. The present study's main contribution is to forecast the near-future of COVID-19 trends to allow non-pharmacological interventions (NPI) by public health authorities and/or government policymakers. We have divided the COVID-19 pandemic in Iran into two waves, Wave I, from February 20, 2020 to May 4, 2020, and Wave II from May 5, 2020, to the present. Two statistical methods, i.e., Pearson correlation coefficient (R) and the coefficient of determination (R2), are used to assess the accuracy of studied models. Results for Wave I Logistic, Ratkowsky, and SIRD models have correctly fitted COVID-19 data in Iran. SIRD model has fitted the first peak of infection very closely on April 6, 2020, with 34,447 cases (The actual peak day was April 7, 2020, with 30,387 active infected patients) with the re-production number R0=3.95. Results of Wave II indicate that the SIRD model has precisely fitted with the second peak of infection, which was on June 20, 2020, with 19,088 active infected cases compared with the actual peak day on June 21, 2020, with 17,644 cases. In Wave II, the re-production number R0=1.45 is reduced, indicating a lower transmission rate. We aimed to provide even a rough project future trends of COVID-19 in Iran for NPI decisions. Between 180,000 to 250,000 infected cases and a death toll of between 6,000 to 65,000 cases are expected in Wave II of COVID-19 in Iran. There is currently no analytical method to project more waves of COVID-19 beyond Wave II.


2016 ◽  
Vol 14 (5) ◽  
Author(s):  
Nurshuhada Zainon ◽  
Fazul Azli Mohd Rahim ◽  
Dalila Roslan ◽  
Azlan Helmy Abd Samat

Dengue is endemic in Malaysia; it is found mainly in the urban and suburban areas. Aedes Aegypti and Aedes Albopictus have been incriminated in the transmission of dengue virus in many urban areas of South-East Asia, including Malaysia. Dengue cases that have been reported worldwide were related with high rise buildings especially in residential buildings such as apartments and condominiums. This study aims to identify the breeding habitats resulted from building designs in high-rise apartments in Kuala Lumpur, Malaysia. Inspections were conducted at three dengue-hotspots residential buildings located in Lembah Pantai, Kuala Lumpur. The selection criteria of the study sites were based on the most frequent reports on dengue cases from these three localities. The building elements that Aedes breeding were spotted created semi-permanent areas for Aedes breeding. Findings show the buildings were designed with unreachable rain gutters, making checking and cleaning for mosquito breeding in clogged gutters impossible for local residents. Poor drainage and piping system has found to be the Aedes habitats, too. Of these, surprisingly, uneven surface of the concrete rooftops and floors has also become one of the breeding spots, resulting to water stagnation and liveable areas for Aedes to breed. Correlating this findings not only helps target areas to be identified and focused in community search and destroy programs, but most importantly it contributes to high-rise building design and construction features in Malaysia by taking into considerations long-lasting measures for a holistic sustainable environment.


Author(s):  
Nurshuhada Zainon ◽  
Faizul Azli Mohd Rahim ◽  
Dalila Roslan ◽  
Azlan Helmy Abd Samat

Dengue is endemic in Malaysia; it is found mainly in the urban and suburban areas. Aedes Aegypti and Aedes Albopictus have been incriminated in the transmission of dengue virus in many urban areas of South-East Asia, including Malaysia. Dengue cases that have been reported worldwide were related with high rise buildings especially in residential buildings such as apartments and condominiums. This study aims to identify the breeding habitats resulted from building designs in high-rise apartments in Kuala Lumpur, Malaysia. Inspections were conducted at three dengue-hotspots residential buildings located in Lembah Pantai, Kuala Lumpur. The selection criteria of the study sites were based on the most frequent reports on dengue cases from these three localities. The building elements that Aedes breeding were spotted created semi-permanent areas for Aedes breeding. Findings show the buildings were designed with unreachable rain gutters, making checking and cleaning for mosquito breeding in clogged gutters impossible for local residents. Poor drainage and piping system has found to be the Aedes habitats, too. Of these, surprisingly, uneven surface of the concrete rooftops and floors has also become one of the breeding spots, resulting to water stagnation and liveable areas for Aedes to breed. Correlating this findings not only helps target areas to be identified and focused in community search and destroy programs, but most importantly it contributes to high-rise building design and construction features in Malaysia by taking into considerations long-lasting measures for a holistic sustainable environment.


2011 ◽  
Vol 4 (2) ◽  
pp. 102-114 ◽  
Author(s):  
Evgenyi N. Panov ◽  
Larissa Yu. Zykova

Field studies were conducted in Central Negev within the breeding range of Laudakia stellio brachydactyla and in NE Israel (Qyriat Shemona) in the range of an unnamed form (tentatively “Near-East Rock Agama”), during March – May 1996. Additional data have been collected in Jerusalem at a distance of ca. 110 km from the first and about 170 km from the second study sites. A total of 63 individuals were caught and examined. The animals were marked and their subsequent movements were followed. Social and signal behavior of both forms were described and compared. Lizards from Negev and Qyriat Shemona differ from each other sharply in external morphology, habitat preference, population structure, and behavior. The differences obviously exceed the subspecies level. At the same time, the lizards from Jerusalem tend to be intermediate morphologically between those from both above-named localities, which permits admitting the existence of a limited gene flow between lizard populations of Negev and northern Israel. The lizards from NE Israel apparently do not belong to the nominate subspecies of L. stellio and should be regarded as one more subspecies within the species.


2019 ◽  
Vol 43 (3) ◽  
pp. 229-249 ◽  
Author(s):  
Shahrzad Soudian ◽  
Umberto Berardi

This article investigates the possibility to enhance the use of latent heat thermal energy storage (LHTES) as an energy retrofit measure by night ventilation strategies. For this scope, phase change materials (PCMs) are integrated into wall and ceiling surfaces of high-rise residential buildings with highly glazed facades that experience high indoor diurnal temperatures. In particular, this article investigates the effect of night ventilation on the performance of the PCMs, namely, the daily discharge of the thermal energy stored by PCMs. Following previous experimental tests that have shown the efficacy of LHTES in temperate climates, a system comprising two PCM layers with melting temperatures selected for a year-around LHTES was considered. To quantify the effectiveness of different night ventilation strategies to enhance the potential of this composite PCM system, simulations in EnergyPlusTM were performed. The ventilation flow rate, set point temperature, and operation period were the main tested parameters. The performance of the PCMs in relation to the variables was evaluated based on indoor operative temperature and cooling energy use variations in Toronto and New York in the summer. The solidification of the PCMs was analyzed based on the amount of night ventilation needed in each climate condition. The results quantify the positive impact of combining PCMs with night ventilation on cooling energy reductions and operative temperature regulation of the following days. In particular, the results indicate higher benefits obtainable with PCMs coupled with night ventilation in the context of Toronto, since this city experiences higher daily temperature fluctuations. The impact of night ventilation design variables on the solidification rate of the PCMs varied based on each parameter leading to different compromises based on the PCM and climate characteristics.


2021 ◽  
pp. 109019812110144
Author(s):  
Soon Guan Tan ◽  
Aravind Sesagiri Raamkumar ◽  
Hwee Lin Wee

This study aims to describe Facebook users’ beliefs toward physical distancing measures implemented during the Coronavirus disease (COVID-19) pandemic using the key constructs of the health belief model. A combination of rule-based filtering and manual classification methods was used to classify user comments on COVID-19 Facebook posts of three public health authorities: Centers for Disease Control and Prevention of the United States, Public Health England, and Ministry of Health, Singapore. A total of 104,304 comments were analyzed for posts published between 1 January, 2020, and 31 March, 2020, along with COVID-19 cases and deaths count data from the three countries. Findings indicate that the perceived benefits of physical distancing measures ( n = 3,463; 3.3%) was three times higher than perceived barriers ( n = 1,062; 1.0%). Perceived susceptibility to COVID-19 ( n = 2,934; 2.8%) was higher compared with perceived severity ( n = 2,081; 2.0%). Although susceptibility aspects of physical distancing were discussed more often at the start of the year, mentions on the benefits of intervention emerged stronger toward the end of the analysis period, highlighting the shift in beliefs. The health belief model is useful for understanding Facebook users’ beliefs at a basic level, and it provides a scope for further improvement.


2021 ◽  
Vol 11 (6) ◽  
pp. 2590
Author(s):  
Samson Tan ◽  
Darryl Weinert ◽  
Paul Joseph ◽  
Khalid Moinuddin

Given that existing fire risk models often ignore human and organizational errors (HOEs) ultimately leading to underestimation of risks by as much as 80%, this study employs a technical-human-organizational risk (T-H-O-Risk) methodology to address knowledge gaps in current state-of-the-art probabilistic risk analysis (PRA) for high-rise residential buildings with the following goals: (1) Develop an improved PRA methodology to address concerns that deterministic, fire engineering approaches significantly underestimate safety levels that lead to inaccurate fire safety levels. (2) Enhance existing fire safety verification methods by incorporating probabilistic risk approach and HOEs for (i) a more inclusive view of risk, and (ii) to overcome the deterministic nature of current verification methods. (3) Perform comprehensive sensitivity and uncertainty analyses to address uncertainties in numerical estimates used in fault tree/event trees, Bayesian network and system dynamics and their propagation in a probabilistic model. (4) Quantification of human and organizational risks for high-rise residential buildings which contributes towards a policy agenda in the direction of a sustainable, risk-based regulatory regime. This research contributes to the development of the next-generation building codes and risk assessment methodologies.


Sign in / Sign up

Export Citation Format

Share Document