scholarly journals Quantum Complexity and Chaos in Young Black Holes

Universe ◽  
2019 ◽  
Vol 5 (4) ◽  
pp. 93 ◽  
Author(s):  
Alexander Y. Yosifov ◽  
Lachezar G. Filipov

We argue that the problem of calculating retention time scales in young black holes is a problem of relative state complexity. In particular, we suggest that Alice’s ability to estimate the time scale for a perturbed black hole to release the extra n qubits comes down to her decoding the Hilbert space of the Hawking radiation. We then demonstrate the decoding task Alice faces is very difficult, and in order to calculate the relative state complexity she would either need to act with an exponentially complex unitary operator or apply an extremely fine-tuned future precursor operator to the perturbed state in S U ( 2 K ) .

2021 ◽  
Vol 2021 (7) ◽  
Author(s):  
Yoshinori Matsuo

Abstract Recently it was proposed that the entanglement entropy of the Hawking radiation contains the information of a region including the interior of the event horizon, which is called “island.” In studies of the entanglement entropy of the Hawking radiation, the total system in the black hole geometry is separated into the Hawking radiation and black hole. In this paper, we study the entanglement entropy of the black hole in the asymptotically flat Schwarzschild spacetime. Consistency with the island rule for the Hawking radiation implies that the information of the black hole is located in a different region than the island. We found an instability of the island in the calculation of the entanglement entropy of the region outside a surface near the horizon. This implies that the region contains all the information of the total system and the information of the black hole is localized on the surface. Thus the surface would be interpreted as the stretched horizon. This structure also resembles black holes in the AdS spacetime with an auxiliary flat spacetime, where the information of the black hole is localized at the interface between the AdS spacetime and the flat spacetime.


2021 ◽  
Vol 2021 (4) ◽  
Author(s):  
Xuanhua Wang ◽  
Ran Li ◽  
Jin Wang

Abstract We apply the recently proposed quantum extremal surface construction to calculate the Page curve of the eternal Reissner-Nordström black holes in four dimensions ignoring the backreaction and the greybody factor. Without the island, the entropy of Hawking radiation grows linearly with time, which results in the information paradox for the eternal black holes. By extremizing the generalized entropy that allows the contributions from the island, we find that the island extends to the outside the horizon of the Reissner-Nordström black hole. When taking the effect of the islands into account, it is shown that the entanglement entropy of Hawking radiation at late times for a given region far from the black hole horizon reproduces the Bekenstein-Hawking entropy of the Reissner-Nordström black hole with an additional term representing the effect of the matter fields. The result is consistent with the finiteness of the entanglement entropy for the radiation from an eternal black hole. This facilitates to address the black hole information paradox issue in the current case under the above-mentioned approximations.


2011 ◽  
Vol 26 (13) ◽  
pp. 937-947 ◽  
Author(s):  
ALEXANDRE YALE

We study the semiclassical tunneling of scalar and fermion fields from the horizon of a Constant Curvature Black Hole, which is locally AdS and whose five-dimensional analogue is dual to [Formula: see text] super-Yang–Mills. In particular, we highlight the strong reliance of the tunneling method for Hawking radiation on near-horizon symmetries, a fact often hidden behind the algorithmic procedure with which the tunneling approach tends to be used. We ultimately calculate the emission rate of scalars and fermions, and hence the black hole's Hawking temperature.


2016 ◽  
Vol 94 (12) ◽  
pp. 1369-1371 ◽  
Author(s):  
Gu-Qiang Li

The tunneling radiation of particles from Born–Infeld anti-de Sitter black holes is studied by using the Parikh–Wilczek method and the emission rate of a particle is calculated. It is shown that the emission rate is related to the change of the Bekenstein–Hawking entropy of the black hole and the emission spectrum deviates from the purely thermal spectrum but is consistent with an underlying unitary theory.


2020 ◽  
Vol 35 (30) ◽  
pp. 2050194
Author(s):  
Peng Wen ◽  
Xin-Yang Wang ◽  
Wen-Biao Liu

By calculating the entropy of a scalar field in the interior volume of noncommutative black holes and considering an infinitesimal process of Hawking radiation, a proportion function is constructed that reflects the evolution relation between the scalar field entropy and Bekenstein–Hawking entropy under Hawking radiation. Comparing with the case of Schwarzschild black holes, the new physics of this research can be expanded to the later stage of Hawking radiation. From the result, we find that the proportion function is still a constant in the earlier stage of Hawking radiation, which is identical to the case of Schwarzschild black holes. As Hawking radiation goes into the later stage, the behavior of the function will be dominated by the noncommutative effect. In this circumstance, the proportion function is no longer a constant and decreases with the evaporation process. When the noncommutative black hole evolves into its final state with Hawking radiation, the interior volume will converge to a certain value, which implies that the loss of information of the black hole during the evaporation process will finally be stored in the limited interior volume.


2019 ◽  
Vol 28 (08) ◽  
pp. 1950102
Author(s):  
Muhammad Rizwan ◽  
Khalil Ur Rehman

By considering the quantum gravity effects based on generalized uncertainty principle, we give a correction to Hawking radiation of charged fermions from accelerating and rotating black holes. Using Hamilton–Jacobi approach, we calculate the corrected tunneling probability and the Hawking temperature. The quantum corrected Hawking temperature depends on the black hole parameters as well as quantum number of emitted particles. It is also seen that a remnant is formed during the black hole evaporation. In addition, the corrected temperature is independent of an angle [Formula: see text] which contradicts the claim made in the literature.


1996 ◽  
Vol 05 (03) ◽  
pp. 227-250 ◽  
Author(s):  
MARCO CAVAGLIÀ ◽  
VITTORIO DE ALFARO ◽  
ALEXANDRE T. FILIPPOV

We quantize by the Dirac-Wheeler-DeWitt method the canonical formulation of the Schwarzschild black hole developed in a previous paper. We investigate the properties of the operators that generate rigid symmetries of the Hamiltonian, establish the form of the invariant measure under the rigid transformations, and determine the gauge fixed Hilbert space of states. We also prove that the reduced quantization method leads to the same Hilbert space for a suitable gauge fixing.


2020 ◽  
Vol 29 (07) ◽  
pp. 2050048
Author(s):  
Xin-Yang Wang ◽  
Yi-Ru Wang ◽  
Wen-Biao Liu

Based on the definition of the interior volume of spherically symmetry black holes, the interior volume of Schwarzschild–(Anti) de Sitter black holes is calculated. It is shown that with the cosmological constant ([Formula: see text]) increasing, the changing behaviors of both the position of the largest hypersurface and the interior volume for the Schwarzschild–Anti de Sitter black hole are the same as the Schwarzschild–de Sitter black hole. Considering a scalar field in the interior volume and Hawking radiation with only energy, the evolution relation between the scalar field entropy and Bekenstein–Hawking entropy is constructed. The results show that the scalar field entropy is approximately proportional to Bekenstein–Hawking entropy during Hawking radiation. Meanwhile, the proportionality coefficient is also regarded as a constant approximately with the increasing [Formula: see text]. Furthermore, considering [Formula: see text] as a dynamical variable, the modified Stefan–Boltzmann law is proposed which can be used to describe the variation of both the mass and [Formula: see text] under Hawking radiation. Using this modified law, the evolution relation between the two types of entropy is also constructed. The results show that the coefficient for Schwarzschild–de Sitter black holes is closer to a constant than the one for Schwarzschild–Anti de Sitter black holes during the evaporation process. Moreover, we find that for Hawking radiation carrying only energy, the evolution relation is a special case compared with the situation that the mass and [Formula: see text] are both considered as dynamical variables.


2011 ◽  
Vol 20 (11) ◽  
pp. 2205-2221
Author(s):  
ALEX B. NIELSEN

We discuss some of the physical aspects expected to be associated with black holes. These include Hawking radiation, horizon entropy and cosmic censorship. In particular we focus on whether these properties are more naturally associated to causally defined horizons or quasi-local horizons.


2016 ◽  
Vol 13 (08) ◽  
pp. 1630014 ◽  
Author(s):  
Alessandro D. A. M. Spallicci ◽  
Maurice H. P. M. van Putten

Obviously, in Galilean physics, the universality of free fall implies an inertial frame, which in turns implies that the mass [Formula: see text] of the falling body is omitted (because it is a test mass; put otherwise, the center of mass of the system coincides with the center of the main, and fixed, mass [Formula: see text]; or else, we consider only a homogeneous gravitational field). Conversely, an additional (in the opposite or same direction) acceleration proportional to [Formula: see text] would rise either for an observer at the center of mass of the system, or for an observer at a fixed distance from the center of mass of [Formula: see text]. These elementary, but overlooked, considerations fully respect the equivalence principle (EP) and the (local) identity of an inertial or a gravitational pull for an observer in the Einstein cabin. They value as fore-runners of the self-force and gauge dependency in general relativity. Because of its importance in teaching and in the history of physics, coupled to the introductory role to Einstein’s EP, the approximate nature of Galilei’s law of free fall is explored herein. When stepping into general relativity, we report how the geodesic free fall into a black hole was the subject of an intense debate again centered on coordinate choice. Later, we describe how the infalling mass and the emitted gravitational radiation affect the free fall motion of a body. The general relativistic self-force might be dealt with to perfectly fit into a geodesic conception of motion. Then, embracing quantum mechanics, real black holes are not classical static objects any longer. Free fall has to handle the Hawking radiation, and leads us to new perspectives on the varying mass of the evaporating black hole and on the varying energy of the falling mass. Along the paper, we also estimate our findings for ordinary masses being dropped from a Galilean or Einsteinian Pisa-like tower with respect to the current state of the art drawn from precise measurements in ground and space laboratories, and to the constraints posed by quantum measurements. Appendix A describes how education physics and high impact factor journals discuss the free fall. Finally, case studies conducted on undergraduate students and teachers are reviewed.


Sign in / Sign up

Export Citation Format

Share Document