scholarly journals The State of the Art in Constraining Axion-to-Nucleon Coupling and Non-Newtonian Gravity from Laboratory Experiments

Universe ◽  
2020 ◽  
Vol 6 (9) ◽  
pp. 147 ◽  
Author(s):  
Vladimir M. Mostepanenko ◽  
Galina L. Klimchitskaya

Constraints on the Yukawa-type corrections to Newton’s gravitational law and on the coupling constant of axionlike particles to nucleons obtained from different laboratory experiments are reviewed and compared. The constraints on non-Newtonian gravity under discussion cover the wide interaction range from nanometers to millimeters and follow from the experiments on neutron scattering, measuring the Casimir force and Cavendish-type experiments. The constraints on the axion-to-nucleon coupling constant following from the magnetometer measurements, Cavendish-type experiments, Casimir physics, and experiments with beams of molecular hydrogen are considered, which refer to the region of axion masses from 10−10 to 200 eV. Particular attention is given to the recent constraints obtained from measuring the Casimir force at nanometer separation distance between the test bodies. Several proposed experiments focussed on constraining the non-Newtonian gravity, axionlike particles and other hypothetical weakly interacting particles, such as chameleons and symmetrons, are discussed.

Universe ◽  
2021 ◽  
Vol 7 (9) ◽  
pp. 343
Author(s):  
Galina L. Klimchitskaya ◽  
Vladimir M. Mostepanenko

We consider axionlike particles as the most probable constituents of dark matter, the Yukawa-type corrections to Newton’s gravitational law and constraints on their parameters following from astrophysics and different laboratory experiments. After a brief discussion of the results by Prof. Yu. N. Gnedin in this field, we turn our attention to the recent experiment on measuring the differential Casimir force between Au-coated surfaces of a sphere and the top and bottom of rectangular trenches. In this experiment, the Casimir force was measured over an unusually wide separation region from 0.2 to 8μm and compared with the exact theory based on first principles of quantum electrodynamics at nonzero temperature. We use the measure of agreement between experiment and theory to obtain the constraints on the coupling constant of axionlike particles to nucleons and on the interaction strength of a Yukawa-type interaction. The constraints obtained on the axion-to-nucleon coupling constant and on the strength of a Yukawa interaction are stronger by factors of 4 and 24, respectively, than those found previously from gravitational experiments and measurements of the Casimir force but weaker than the constraints following from a differential measurement where the Casimir force was nullified. Some other already performed and planned experiments aimed at searching for axions and non-Newtonian gravity are discussed, and their prospects are evaluated.


2005 ◽  
Vol 20 (11) ◽  
pp. 2205-2221 ◽  
Author(s):  
G. L. KLIMCHITSKAYA ◽  
R. S. DECCA ◽  
E. FISCHBACH ◽  
D. E. KRAUSE ◽  
D. LÓPEZ ◽  
...  

We have performed a precise experimental determination of the Casimir pressure between two gold-coated parallel plates by means of a micromachined oscillator. In contrast to all previous experiments on the Casimir effect, where a small relative error (varying from 1% to 15%) was achieved only at the shortest separation, our smallest experimental error (~ 0.5%) is achieved over a wide separation range from 170 nm to 300 nm at 95% confidence. We have formulated a rigorous metrological procedure for the comparison of experiment and theory without resorting to the previously used root-mean-square deviation, which has been criticized in the literature. This enables us to discriminate among different competing theories of the thermal Casimir force, and to resolve a thermodynamic puzzle arising from the application of Lifshitz theory to real metals. Our results lead to a more rigorous approach for obtaining constraints on hypothetical long-range interactions predicted by extra-dimensional physics and other extensions of the Standard Model. In particular, the constraints on non-Newtonian gravity are strengthened by up to a factor of 20 in a wide interaction range at 95% confidence.


Author(s):  
Tushar Suhasaria ◽  
Vito Mennella

Refractory dust grains have an important role to play in the chemistry of star and planet-forming regions. Their surfaces interact with interstellar gas and act as a catalyst for the formation of simple and complex molecules in space. Several mechanisms have been invoked to explain how molecular hydrogen is formed in reactions on dust grain surfaces in different regions of space. In this article, we give an overview of our understanding of the laboratory experiments, conducted over the last 20 years, that deal with H2 formation on interstellar grain analogs in space simulated conditions.


1988 ◽  
Vol 130 ◽  
pp. 509-509
Author(s):  
Katsuhiko Sato ◽  
Masahiro Kawasaki

Recently Nagoya-Berkeley group (Matsumoto et al, 1987) observed microwave radiation in the Wien region precisely and found the excess of temperature. In the previous paper (kawasaki and Sato, 1986), we investigated the distortion of the spectrum of microwave background radiation due to the radiative decay of weakly interacting massive particles. At that time, however, the distortion was not observed. In the present paper, we investigated in detail whether the decay of WIMPs can account for the observed distortion of the spectrum or not. In Fig. 1, an example is shown.


2005 ◽  
Vol 20 (11) ◽  
pp. 2222-2231 ◽  
Author(s):  
F. CHEN ◽  
U. MOHIDEEN ◽  
P. W. MILONNI

Modern unification theories that seek to unify gravity with the other fundamental forces predict a host of new particles outside the standard model. Many also invoke extra dimensions. Both of these effects lead to deviations from Newtonian gravity. For sub micron distance between two bodies, the Casimir force far exceeds the gravitational force. Thus both understanding and using the Casimir force is very important for checking the relevance of these unification theories. In particular, measurements of the Casimir force has allowed one to set some of the strongest constraints for corresponding distance regions. This paper summarizes the techniques used to measure the Casimir force and some of the limits that follow from them.


2015 ◽  
Vol 24 (05) ◽  
pp. 1550034 ◽  
Author(s):  
S. Bondarenko ◽  
K. Komoshvili

Transport properties of a charged droplet of weakly interacting particles in transverse electric field are investigated. Nonequilibrium, time-dependent distribution function which describes a process of the droplet transverse evolution with constant entropy in the field is calculated. With the help of this distribution function, shear viscosity coefficients in the transverse plane are calculated as well. They are found to be dependent on the ratio of the potential energy of the droplet in the electric field to the kinetic energy of the droplet; for weakly interacting particles, this parameter is small. Additionally, these coefficients are time-dependent and change during the hydrodynamical state of the droplet's expansion. Applicability of the results to the description of initial states of quark–gluon plasma (QGP) obtained in high-energy interactions of nuclei is also discussed.


Sign in / Sign up

Export Citation Format

Share Document