scholarly journals Magnetic Dual Chiral Density Wave: A Candidate Quark Matter Phase for the Interior of Neutron Stars

Universe ◽  
2021 ◽  
Vol 7 (12) ◽  
pp. 458
Author(s):  
Efrain J. Ferrer ◽  
Vivian de la Incera

In this review, we discuss the physical characteristics of the magnetic dual chiral density wave (MDCDW) phase of dense quark matter and argue why it is a promising candidate for the interior matter phase of neutron stars. The MDCDW condensate occurs in the presence of a magnetic field. It is a single-modulated chiral density wave characterized by two dynamically generated parameters: the fermion quasiparticle mass m and the condensate spatial modulation q. The lowest-Landau-level quasiparticle modes in the MDCDW system are asymmetric about the zero energy, a fact that leads to the topological properties and anomalous electric transport exhibited by this phase. The topology makes the MDCDW phase robust against thermal phonon fluctuations, and as such, it does not display the Landau–Peierls instability, a staple feature of single-modulated inhomogeneous chiral condensates in three dimensions. The topology is also reflected in the presence of the electromagnetic chiral anomaly in the effective action and in the formation of hybridized propagating modes known as axion-polaritons. Taking into account that one of the axion-polaritons of this quark phase is gapped, we argue how incident γ-ray photons can be converted into gapped axion-polaritons in the interior of a magnetar star in the MDCDW phase leading the star to collapse, a phenomenon that can serve to explain the so-called missing pulsar problem in the galactic center.

2022 ◽  
Vol 258 ◽  
pp. 07004
Author(s):  
Niko Jokela

The holographic models for dense QCD matter work surprisingly well. A general implication seems that the deconfinement phase transition dictates the maximum mass of neutron stars. The nuclear matter phase turns out to be rather stiff which, if continuously merged with nuclear matter models based on effective field theories, leads to the conclusion that neutron stars do not have quark matter cores in the light of all current astrophysical data. We comment that as the perturbative QCD results are in stark contrast with strong coupling results, any future simulations of neutron star mergers incorporating corrections beyond ideal fluid should proceed cautiously. For this purpose, we provide a model which treats nuclear and quark matter phases in a unified framework at strong coupling.


2001 ◽  
Vol 15 (10n11) ◽  
pp. 1519-1534 ◽  
Author(s):  
HENNING HEISELBERG

Recent developments in neutron star theory and observation are discussed. Based on modern nucleon-nucleon potentials more reliable equations of state for dense nuclear matter have been constructed. Furthermore, phase transitions such as pion, kaon and hyperon condensation, superfluidity and quark matter can occur in cores of neutron stars. Specifically, the nuclear to quark matter phase transition and its mixed phases with intriguing structures are treated. Rotating neutron stars with and without phase transitions are discussed and compared to observed masses, radii and glitches. The observations of possible heavy ~2M⊙ neutron stars in X-ray binaries and quasi-periodic oscillations require relatively stiff equations of state and restrict strong phase transitions to occur at very high nuclear densities only.


1993 ◽  
Vol 07 (19) ◽  
pp. 3415-3421 ◽  
Author(s):  
ALEXANDRE S. ROZHAVSKY

A field description of spin-density-wave (SDW) in a quasi-two-dimensional metal with open Fermi surface in magnetic field, is proposed. The SDW transition temperature, T c (H), and the Hall conductivity σxy, are calculated. The dependence T c (H) is found to be different from that of the Bardeen-Cooper-Schrieffer model, in particular, a threshold field, H c , found its natural explanation. It is proved that the quantized Hall conductivity arises from the chiral anomaly terms in the effective action provided there is pinning of chemical potential in the gap of extended states.


2004 ◽  
Vol 19 (S1) ◽  
pp. 189-196
Author(s):  
Marcello Baldo
Keyword(s):  

2014 ◽  
Vol 23 (09) ◽  
pp. 1450078
Author(s):  
Victor Ts. Gurovich ◽  
Leonid G. Fel

We calculate the quasiclassical probability to emerge the quantum fluctuation which gives rise to the quark-matter drop with interface propagating as the self-similar spherical detonation wave (DN) in the ambient nuclear matter. For this purpose, we make use of instanton method which is known in the quantum field theory.


1981 ◽  
Vol 98 (1-2) ◽  
pp. 140-144 ◽  
Author(s):  
Enrique Alvarez

2003 ◽  
Vol 18 (32) ◽  
pp. 2255-2264 ◽  
Author(s):  
O. A. Battistel ◽  
G. Krein

Chiral symmetry breaking at finite baryon density is usually discussed in the context of quark matter, i.e. a system of deconfined quarks. Many systems like stable nuclei and neutron stars however have quarks confined within nucleons. In this paper we construct a Fermi sea of three-quark nucleon clusters and investigate the change of the quark condensate as a function of baryon density. We study the effect of quark clustering on the in-medium quark condensate and compare results with the traditional approach of modeling hadronic matter in terms of a Fermi sea of deconfined quarks.


2015 ◽  
Vol 55 (3) ◽  
pp. 203-214 ◽  
Author(s):  
Michal Zajacek ◽  
Vladimir Karas ◽  
Devaky Kunneriath

Streams of gas and dust in the inner parsec of the Galactic center form a distinct feature known as the Minispiral, which has been studied in radio waveband as well as in the infrared wavebands. A large fraction of the Minispiral gas is ionized by radiation of OB stars present in the Nuclear Star Cluster (NSC). Based on the inferred mass in the innermost parsec ( ~106 solar masses), over ~103–104 neutron stars should move in the sphere of gravitational influence of the SMBH. We estimate that a fraction of them propagate through the denser, ionized medium concentrated mainly along the three arms of the Minispiral. Based on the properties of the gaseous medium, we discuss different interaction regimes of magnetised neutron stars passing through this region. Moreover, we sketch expected observational effects of these regimes. The simulation results may be applied to other galactic nuclei hosting NSC, where the expected distribution of the interaction regimes is different across different galaxy types.


Sign in / Sign up

Export Citation Format

Share Document