scholarly journals Antiviral RNA Interference Activity in Cells of the Predatory Mosquito, Toxorhynchites amboinensis

Viruses ◽  
2018 ◽  
Vol 10 (12) ◽  
pp. 694 ◽  
Author(s):  
Claire Donald ◽  
Margus Varjak ◽  
Eric Aguiar ◽  
João Marques ◽  
Vattipally Sreenu ◽  
...  

Arthropod vectors control the replication of arboviruses through their innate antiviral immune responses. In particular, the RNA interference (RNAi) pathways are of notable significance for the control of viral infections. Although much has been done to understand the role of RNAi in vector populations, little is known about its importance in non-vector mosquito species. In this study, we investigated the presence of an RNAi response in Toxorhynchites amboinensis, which is a non-blood feeding species proposed as a biological control agent against pest mosquitoes. Using a derived cell line (TRA-171), we demonstrate that these mosquitoes possess a functional RNAi response that is active against a mosquito-borne alphavirus, Semliki Forest virus. As observed in vector mosquito species, small RNAs are produced that target viral sequences. The size and characteristics of these small RNAs indicate that both the siRNA and piRNA pathways are induced in response to infection. Taken together, this data suggests that Tx. amboinensis are able to control viral infections in a similar way to natural arbovirus vector mosquito species. Understanding their ability to manage arboviral infections will be advantageous when assessing these and similar species as biological control agents.

2017 ◽  
Author(s):  
Fergal M. Waldron ◽  
Graham N. Stone ◽  
Darren J. Obbard

AbstractRNA interference (RNAi)-related pathways target viruses and transposable element (TE) transcripts in plants, fungi, and ecdysozoans (nematodes and arthropods), giving protection against infection and transmission. In each case, this produces abundant TE and virus-derived 20-30nt small RNAs, which provide a characteristic signature of RNAi-mediated defence. The broad phylogenetic distribution of the Argonaute and Dicer-family genes that mediate these pathways suggests that defensive RNAi is ancient and probably shared by most animal (metazoan) phyla. Indeed, while vertebrates had been thought an exception, it has recently been argued that mammals also possess an antiviral RNAi pathway, although its immunological relevance is currently uncertain and the viral small RNAs are not detectably under natural conditions. Here we use a metagenomic approach to test for the presence of virus-derived small RNAs in five divergent animal phyla (Porifera, Cnidaria, Echinodermata, Mollusca, and Annelida), and in a brown alga—which represents an independent origin of multicellularity from plants, fungi, and animals. We use metagenomic RNA sequencing to identify around 80 virus-like contigs in these lineages, and small RNA sequencing to identify small RNAs derived from those viruses. Contrary to our expectations, we were unable to identify canonical (i.e. Drosophila-, nematode- or plant-like) viral small RNAs in any of these organisms, despite the widespread presence of abundant micro-RNAs, and transposon-derived somatic Piwi-interacting piRNAs in the animals. Instead, we identified a distinctive group of virus-derived small RNAs in the mollusc, which have a piRNA-like length distribution but lack key signatures of piRNA biogenesis, and a group of 21U virus-derived small RNAs in the brown alga. We also identified primary piRNAs derived from putatively endogenous copies of DNA viruses in the cnidarian and the echinoderm, and an endogenous RNA virus in the mollusc. The absence of canonical virus-derived small RNAs from our samples may suggest that the majority of animal phyla lack an antiviral RNAi response. Alternatively, these phyla could possess an antiviral RNAi response resembling that reported for vertebrates, which is not detectable through simple metagenomic sequencing of wild-type individuals. In either case, our findings suggest that the current antiviral RNAi responses of arthropods and nematodes are highly diverged from the ancestral metazoan state, and that antiviral RNAi may even have evolved independently on multiple occasions.Author summaryThe presence of abundant virus-derived small RNAs in infected plants, fungi, nematodes, and arthropods suggests that Dicer-dependent antiviral RNAi is an ancient and conserved defence. Using metagenomic sequencing from wild-caught organisms we show that antiviral RNAi is highly variable across animals. We identify a distinctive group of virus-derived small RNAs in a mollusc, which have a piRNA-like length distribution but lack key signatures of piRNA biogenesis. We also report a group of 21U virus-derived small RNAs in a brown alga, which represents an origin of multicellularity separate from that of plants, fungi, and animals. The absence of virus-derived small RNAs from our samples may suggest that the majority of animal phyla lack an antiviral RNAi response or that these phyla could possess an antiviral RNAi response resembling that reported for vertebrates, which is not detectable through simple metagenomic sequencing of wild-type individuals. In addition, we report abundant somatic piRNAs across anciently divergent animals suggesting that this is the ancestral state in Bilateria. Our study challenges the widely-held assumption that most invertebrates possess an antiviral RNAi pathway likely similar to that seen in Drosophila, other arthropods, and nematodes.


2009 ◽  
Vol 83 (11) ◽  
pp. 5735-5748 ◽  
Author(s):  
Ghassem Attarzadeh-Yazdi ◽  
Rennos Fragkoudis ◽  
Yi Chi ◽  
Ricky W. C. Siu ◽  
Liane Ülper ◽  
...  

ABSTRACT In their vertebrate hosts, arboviruses such as Semliki Forest virus (SFV) (Togaviridae) generally counteract innate defenses and trigger cell death. In contrast, in mosquito cells, following an early phase of efficient virus production, a persistent infection with low levels of virus production is established. Whether arboviruses counteract RNA interference (RNAi), which provides an important antiviral defense system in mosquitoes, is an important question. Here we show that in Aedes albopictus-derived mosquito cells, SFV cannot prevent the establishment of an antiviral RNAi response or prevent the spread of protective antiviral double-stranded RNA/small interfering RNA (siRNA) from cell to cell, which can inhibit the replication of incoming virus. The expression of tombusvirus siRNA-binding protein p19 by SFV strongly enhanced virus spread between cultured cells rather than virus replication in initially infected cells. Our results indicate that the spread of the RNAi signal contributes to limiting virus dissemination.


Science ◽  
2006 ◽  
Vol 315 (5809) ◽  
pp. 244-247 ◽  
Author(s):  
Titia Sijen ◽  
Florian A. Steiner ◽  
Karen L. Thijssen ◽  
Ronald H. A. Plasterk

In Caenorhabditis elegans, an effective RNA interference (RNAi) response requires the production of secondary short interfering RNAs (siRNAs) by RNA-directed RNA polymerases (RdRPs). We cloned secondary siRNAs from transgenic C. elegans lines expressing a single 22-nucleotide primary siRNA. Several secondary siRNAs start a few nucleotides downstream of the primary siRNA, indicating that non–RISC (RNA-induced silencing complex)–cleaved mRNAs are substrates for secondary siRNA production. In lines expressing primary siRNAs with single-nucleotide mismatches, secondary siRNAs do not carry the mismatch but contain the nucleotide complementary to the mRNA. We infer that RdRPs perform unprimed RNA synthesis. Secondary siRNAs are only of antisense polarity, carry 5′ di- or triphosphates, and are only in the minority associated with RDE-1, the RNAi-specific Argonaute protein. Therefore, secondary siRNAs represent a distinct class of small RNAs. Their biogenesis depends on RdRPs, and we propose that each secondary siRNA is an individual RdRP product.


1981 ◽  
Vol 71 (1) ◽  
pp. 19-32 ◽  
Author(s):  
R. D. Pope

AbstractThe Rhyzobius (or Lindorus) ventralis frequently referred to in the literature of biological control is shown to be a mixture of two distinct, though similar, species. The origin of the confusion is traced to the nineteenth century searches in Australia for insects to control scale insect infestations on citrus and other crops in California. Adults of the two species are defined and illustrated, and a key is provided for their separation. Lectotypes are designated for R. ventralis (Erichs.), its synonym Scymnus restitutor Sharp and for S. halli Broun, newly synonymised with R. ventralis. A lectotype is designated for Platyomus forestieri Muls., the second species of the complex, here transferred to Rhyzobius, and for S. circularis Sharp, newly synonymised with R. forestieri. Distribution data for both species, based on actual specimens examined, are listed, and their Australian distribution is summarised in a map. Past usages of ‘ R. ventralis’ as a biological control agent are reviewed in the light of the revised taxonomy. The taxonomy and nomenclature of Rhyzobius Stephens is discussed in order to establish the correct generic placement of and binomina for R. ventralis and R. forestieri.


2021 ◽  
Vol 12 ◽  
Author(s):  
Mei Xiang ◽  
Hong-Zhi Zhang ◽  
Xiao-Yu Jing ◽  
Meng-Qing Wang ◽  
Jian-Jun Mao ◽  
...  

The ladybird Coccinella septempunctata L., a predatory insect, serves as an excellent biological control agent against common agricultural pests. It undergoes a diapause phenomenon, during which a large amount of fat accumulates in the abdomen. A comprehensive analysis of this lipid accumulation can reveal the molecular mechanisms underlying diapause regulation, which can be exploited to improve the shipping and transport of the insect for agricultural applications. In this study, we compared the transcriptome of C. septempunctata during non-diapause, diapause, and post-diapause and screened four key genes related to lipid metabolism. The cDNA of these four relevant enzymes, acetyl-CoA carboxylase (ACC), long-chain fatty acid-CoA ligase (ACSL), elongase of very-long-chain fatty acids (ELO), and very-long-chain 3-oxoacyl-CoA reductase (KAR), were cloned using reverse transcription-polymerase chain reaction and rapid amplification of cDNA ends. Their expression profiles were analyzed during the preparation and maintenance phases of diapause and the post-diapause phase. The functions of these four key enzymes in diapause were further verified using RNA interference. All four genes were most closely related to the homeotic gene from Tribolium castaneum. The expression profiles of these four genes were significantly affected under diapause-inducing conditions; their expression level was the highest in the diapause preparation phase, and it gradually decreased with the diapause induction time. RNA interference showed that the target genes play important roles in fat storage during early diapause, and the decrease in their expression leads to a decrease in lipid content in C. septempunctata. These results indicate an important role of ACC, ACSL, ELO, and KAR in lipid accumulation. Our findings could help elucidate the production and accumulation of lipids by insects during the preparation for diapause and improve biological control.


2017 ◽  
Vol 57 (2) ◽  
pp. 677-712 ◽  
Author(s):  
Alena Samková ◽  
Petr Janšta ◽  
John T. Huber

A neotype for Anaphes flavipes (Foerster, 1841) (Hymenoptera: Mymaridae), a biological control agent of Oulema melanopus (Linnaeus, 1758) (Coleoptera: Chrysomelidae), is designated. The extensive literature on A. flavipes is compiled and the morphological variability of selected morphological structures of numerous reared specimens from across its presently known geographic range (mainly eastern Nearctic and western Palearctic) is described. Anaphes flavipes is compared with what appears to be morphologically and biologically the most similar species, A. nipponicus Kuwayama, 1932, from Japan, which is briefly redescribed. Anaphes auripes Walker, 1846, syn. nov., is placed in synonymy under A. flavipes. The following new country and state records for A. flavipes are provided: Czech Republic, Ukraine, Canada (Nova Scotia), USA (Virginia).


Sign in / Sign up

Export Citation Format

Share Document